Advertisement

Nutrition and Microbiome Interactions in Human Cancer

Published:October 05, 2022DOI:https://doi.org/10.1016/j.jand.2022.10.004

      Abstract

      Individual physiologic responses to changes in dietary patterns can vary widely to affect cancer risk, which is driven by multiple host-specific factors (eg, genetics, epigenetics, inflammatory and metabolic states, and the colonizing microbiome). Emerging evidence indicates that diet-induced microbiota alterations are key modulators of several host functions important to tumor etiology, progression, and response to cancer therapy. Thus, diet may potentially be used to target alterations of the microbiota as an effective means to improve outcomes across the cancer continuum (from cancer prevention to tumor development and progression, to effects on treatment and survivorship). This review will focus on recent examples of functional interactions between dietary components (nutrients and non-nutrients) and the gastrointestinal microbiome, which are 2 critical and malleable environmental variables in cancer risk that affect host immune, metabolic, and cell signaling functions and may provide insights for novel cancer therapeutic and preventive strategies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arima K.
        • Zhong R.
        • Ugai T.
        • et al.
        Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: Analyses from two large prospective cohort studies.
        Gastroenterology. 2022; 163: 862-874
        • Papadimitriou N.
        • Markozannes G.
        • Kanellopoulou A.
        • et al.
        An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites.
        Nat Commun. 2021; 12: 4579
        • Bishop K.S.
        • Ferguson L.R.
        The interaction between epigenetics, nutrition and the development of cancer.
        Nutrients. 2015; 7: 922-947
        • Figueiredo J.C.
        • Hsu L.
        • Hutter C.M.
        • et al.
        Genome-wide diet-gene interaction analyses for risk of colorectal cancer.
        PLoS Genet. 2014; 10e1004228
        • Torrence M.E.
        • Manning B.D.
        Nutrient sensing in cancer.
        Annu Rev Cancer Biol. 2018; 2: 251-269
        • Murga-Garrido S.M.
        • Hong Q.
        • Cross T.L.
        • et al.
        Gut microbiome variation modulates the effects of dietary fiber on host metabolism.
        Microbiome. 2021; 9: 117
        • Kolodziejczyk A.A.
        • Zheng D.
        • Elinav E.
        Diet-microbiota interactions and personalized nutrition.
        Nat Rev Microbiol. 2019; 17: 742-753
        • Rothschild D.
        • Weissbrod O.
        • Barkan E.
        • et al.
        Environment dominates over host genetics in shaping human gut microbiota.
        Nature. 2018; 555: 210-215
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • De Filippis F.
        • Vitaglione P.
        • Cuomo R.
        • Berni Canani R.
        • Ercolini D.
        Dietary interventions to modulate the gut microbiome-How far away are we from precision medicine.
        Inflamm Bowel Dis. 2018; 24: 2142-2154
        • Singh R.K.
        • Chang H.W.
        • Yan D.
        • et al.
        Influence of diet on the gut microbiome and implications for human health.
        J Transl Med. 2017; 15: 73
        • Marcobal A.
        • Barboza M.
        • Froehlich J.W.
        • et al.
        Consumption of human milk oligosaccharides by gut-related microbes.
        J Agric Food Chem. 2010; 58: 5334-5340
        • Golonka R.M.
        • Xiao X.
        • Abokor A.A.
        • Joe B.
        • Vijay-Kumar M.
        Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota.
        J Nutr Biochem. 2020; 80108360
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science. 2012; 336: 1262-1267
        • Kumar A.
        • Smith C.
        • Jobin C.
        • et al.
        Workshop report: Modulation of antitumor immune responses by dietary and microbial metabolites.
        J Natl Cancer Inst. 2017; 109: djx040
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • et al.
        Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 491-502
        • Hill C.
        • Guarner F.
        • Reid G.
        • et al.
        Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.
        Nat Rev Gastroenterol Hepatol. 2014; 11: 506-514
        • Eslick S.
        • Thompson C.
        • Berthon B.
        • Wood L.
        Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: A systematic review and meta-analysis.
        Nutr Rev. 2022; 80: 838-856
        • Hadi A.
        • Arab A.
        • Khalesi S.
        • Rafie N.
        • Kafeshani M.
        • Kazemi M.
        Effects of probiotic supplementation on anthropometric and metabolic characteristics in adults with metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials.
        Clin Nutr. 2021; 40: 4662-4673
        • Hutchinson A.N.
        • Bergh C.
        • Kruger K.
        • et al.
        The effect of probiotics on health outcomes in the elderly: A systematic review of randomized, placebo-controlled studies.
        Microorganisms. 2021; 9: 1344
        • Limketkai B.N.
        • Akobeng A.K.
        • Gordon M.
        • Adepoju A.A.
        Probiotics for induction of remission in Crohn's disease.
        Cochrane Database Syst Rev. 2020; 7: CD006634
        • Nelson J.
        • Sjöblom H.
        • Gjertsson I.
        • Ulven S.M.
        • Lindqvist H.M.
        • Bärebring L.
        Do interventions with diet or dietary supplements reduce the disease activity score in rheumatoid arthritis? A systematic review of randomized controlled trials.
        Nutrients. 2020; 12: 2991
        • Chen M.J.
        • Chen C.C.
        • Huang Y.C.
        • et al.
        The efficacy of Lactobacillus acidophilus and rhamnosus in the reduction of bacterial load of Helicobacter pylori and modification of gut microbiota-a double-blind, placebo-controlled, randomized trial.
        Helicobacter. 2021; 26e12857
        • Sanders M.E.
        • Merenstein D.J.
        • Reid G.
        • Gibson G.R.
        • Rastall R.A.
        Probiotics and prebiotics in intestinal health and disease: From biology to the clinic.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 605-616
        • Roberfroid M.
        • Gibson G.R.
        • Hoyles L.
        • et al.
        Prebiotic effects: Metabolic and health benefits.
        Br J Nutr. 2010; 104: S1-S63
        • Mazraeh R.
        • Azizi-Soleiman F.
        • Jazayeri S.
        • Noori S.M.A.
        Effect of inulin-type fructans in patients undergoing cancer treatments: A systematic review.
        Pak J Med Sci. 2019; 35: 575-580
        • Alberts D.S.
        • Martínez M.E.
        • Roe D.J.
        • et al.
        Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians' Network.
        N Engl J Med. 2000; 342: 1156-1162
        • Schatzkin A.
        • Lanza E.
        • Corle D.
        • et al.
        Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group.
        N Engl J Med. 2000; 342: 1149-1155
        • Leulier F.
        • MacNeil L.T.
        • Lee W.J.
        • et al.
        Integrative physiology: At the crossroads of nutrition, microbiota, animal physiology, and human health.
        Cell Metab. 2017; 25: 522-534
        • Spencer C.N.
        • McQuade J.L.
        • Gopalakrishnan V.
        • et al.
        Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response.
        Science. 2021; 374: 1632-1640
        • Farias D.D.
        • de Araujo F.F.
        • Neri-Numa I.A.
        • Pastore G.M.
        Prebiotics: Trends in food, health and technological applications.
        Trends Food Sci Technol. 2019; 93: 23-35
        • Macfarlane G.T.
        • Steed H.
        • Macfarlane S.
        Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics.
        J Appl Microbiol. 2008; 104: 305-344
        • Rafter J.
        • Bennett M.
        • Caderni G.
        • et al.
        Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients.
        Am J Clin Nutr. 2007; 85: 488-496
        • Russell W.R.
        • Scobbie L.
        • Chesson A.
        • et al.
        Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds.
        Nutr Cancer. 2008; 60: 636-642
        • Fischer F.
        • Romero R.
        • Hellhund A.
        • et al.
        Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota.
        Gut Microbes. 2020; 12: 1-17
        • Yan F.
        • Liu L.
        • Dempsey P.J.
        • et al.
        Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.
        J Biol Chem. 2013; 288: 30742-30751
        • Yokota Y.
        • Shikano A.
        • Kuda T.
        • Takei M.
        • Takahashi H.
        • Kimura B.
        Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease.
        Int Immunopharmacol. 2018; 56: 119-127
        • Li W.
        • Hang S.
        • Fang Y.
        • et al.
        A bacterial bile acid metabolite modulates T(reg) activity through the nuclear hormone receptor NR4A1.
        Cell Host Microbe. 2021; 29 (e1369): 1366-1377
        • Belcheva A.
        • Irrazabal T.
        • Robertson S.J.
        • et al.
        Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells.
        Cell. 2014; 158: 288-299
        • Louis P.
        • Hold G.L.
        • Flint H.J.
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Chen H.
        • Nwe P.K.
        • Yang Y.
        • et al.
        A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology.
        Cell. 2019; 177 (e1218): 1217-1231
        • Donia M.S.
        • Fischbach M.A.
        Human microbiota. Small molecules from the human microbiota.
        Science. 2015; 3491254766
        • Defois C.
        • Ratel J.
        • Garrait G.
        • et al.
        Food chemicals disrupt human gut microbiota activity and impact intestinal homeostasis as revealed by in vitro systems.
        Sci Rep. 2018; 811006
        • Gagnière J.
        • Raisch J.
        • Veziant J.
        • et al.
        Gut microbiota imbalance and colorectal cancer.
        World J Gastroenterol. 2016; 22: 501-518
        • Mai V.
        • Draganov P.V.
        Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health.
        World J Gastroenterol. 2009; 15: 81-85
        • Van de Wiele T.
        • Vanhaecke L.
        • Boeckaert C.
        • et al.
        Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites.
        Environ Health Perspect. 2005; 113: 6-10
        • Pellock S.J.
        • Redinbo M.R.
        Glucuronides in the gut: Sugar-driven symbioses between microbe and host.
        J Biol Chem. 2017; 292: 8569-8576
        • Lin Y.S.
        • Thummel K.E.
        • Thompson B.D.
        • Totah R.A.
        • Cho C.W.
        Sources of interindividual variability.
        Methods Mol Biol. 2021; 2342: 481-550
        • Ganesan R.
        • Jeong J.J.
        • Kim D.J.
        • Suk K.T.
        Recent trends of microbiota-based microbial metabolites metabolism in liver disease.
        Front Med (Lausanne). 2022; 9841281
        • Hou H.
        • Chen D.
        • Zhang K.
        • et al.
        Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation?.
        Cancer Lett. 2022; 526: 225-235
        • Jaye K.
        • Li C.G.
        • Chang D.
        • Bhuyan D.J.
        The role of key gut microbial metabolites in the development and treatment of cancer.
        Gut Microbes. 2022; 142038865
        • Vallianou N.
        • Christodoulatos G.S.
        • Karampela I.
        • et al.
        Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: Current evidence and perspectives.
        Biomolecules. 2021; 12: 56
        • Visekruna A.
        • Luu M.
        The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis.
        Front Cell Dev Biol. 2021; 9703218
        • Wei Y.X.
        • Zheng K.Y.
        • Wang Y.G.
        Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity.
        World J Gastroenterol. 2021; 27: 5555-5565
        • Weir T.L.
        • Trikha S.R.J.
        • Thompson H.J.
        Diet and cancer risk reduction: The role of diet-microbiota interactions and microbial metabolites.
        Semin Cancer Biol. 2021; 70: 53-60
        • Cai J.
        • Sun L.
        • Gonzalez F.J.
        Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis.
        Cell Host Microbe. 2022; 30: 289-300
        • Tang Q.
        • Evans R.M.
        Colon cancer checks in when bile acids check out: The bile acid-nuclear receptor axis in colon cancer.
        Essays Biochem. 2021; 65: 1015-1024
        • Zhang W.
        • An Y.
        • Qin X.
        • et al.
        Gut microbiota-derived metabolites in colorectal cancer: The bad and the challenges.
        Front Oncol. 2021; 11739648
        • Chen C.
        • Li H.
        The inhibitory effect of gut microbiota and its metabolites on colorectal cancer.
        J Microbiol Biotechnol. 2020; 30: 1607-1613
        • den Hartigh L.J.
        Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives.
        Nutrients. 2019; 11: 370
        • Jalandra R.
        • Dalal N.
        • Yadav A.K.
        • et al.
        Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer.
        Appl Microbiol Biotechnol. 2021; 105: 7651-7660
        • Wu Y.
        • Rong X.
        • Pan M.
        • et al.
        Integrated analysis reveals the gut microbial metabolite TMAO promotes inflammatory hepatocellular carcinoma by upregulating POSTN.
        Front Cell Dev Biol. 2022; 10840171
        • Hosseinkhani F.
        • Heinken A.
        • Thiele I.
        • Lindenburg P.W.
        • Harms A.C.
        • Hankemeier T.
        The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases.
        Gut Microbes. 2021; 13: 1-22
        • Kumar P.
        • Lee J.H.
        • Lee J.
        Diverse roles of microbial indole compounds in eukaryotic systems.
        Biol Rev Camb Philos Soc. 2021; 96: 2522-2545
        • Chia T.Y.
        • Zolp A.
        • Miska J.
        Polyamine immunometabolism: Central regulators of inflammation, cancer and autoimmunity.
        Cells. 2022; 11: 896
        • Sipos A.
        • Ujlaki G.
        • Mikó E.
        • et al.
        The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling.
        Mol Med. 2021; 27: 33
        • Tofalo R.
        • Cocchi S.
        • Suzzi G.
        Polyamines and gut microbiota.
        Front Nutr. 2019; 6: 16
        • Loke Y.L.
        • Chew M.T.
        • Ngeow Y.F.
        • Lim W.W.D.
        • Peh S.C.
        Colon carcinogenesis: The interplay between diet and gut microbiota.
        Front Cell Infect Microbiol. 2020; 10603086
        • Kaźmierczak-Siedlecka K.
        • Daca A.
        • Roviello G.
        • Catalano M.
        • Połom K.
        Interdisciplinary insights into the link between gut microbiome and gastric carcinogenesis-What is currently known?.
        Gastric Cancer. 2022; 25: 1-10
        • Li X.
        • Zhu H.
        • Sun W.
        • Yang X.
        • Nie Q.
        • Fang X.
        Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells.
        Cancer Cell Int. 2021; 2 (1): 479
        • Hasheminezhad S.H.
        • Boozari M.
        • Iranshahi M.
        • et al.
        A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins.
        Phytother Res. 2022; 36: 112-146
        • Sallam I.E.
        • Abdelwareth A.
        • Attia H.
        • et al.
        Effect of gut microbiota biotransformation on dietary tannins and human health implications.
        Microorganisms. 2021; 9: 965
        • Quinn R.A.
        • Melnik A.V.
        • Vrbanac A.
        • et al.
        Global chemical effects of the microbiome include new bile-acid conjugations.
        Nature. 2020; 579: 123-129
        • Ma C.
        • Han M.
        • Heinrich B.
        • et al.
        Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells.
        Science. 2018; 360eaan5931
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103
        • Matson V.
        • Fessler J.
        • Bao R.
        • et al.
        The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
        Science. 2018; 359: 104-108
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97
        • Rossi T.
        • Vergara D.
        • Fanini F.
        • Maffia M.
        • Bravaccini S.
        • Pirini F.
        Microbiota-derived metabolites in tumor progression and metastasis.
        Int J Mol Sci. 2020; 21: 5786
        • Blachier F.
        • Andriamihaja M.
        • Larraufie P.
        • Ahn E.
        • Lan A.
        • Kim E.
        Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa.
        Am J Physiol Gastrointest Liver Physiol. 2021; 320: G125-G135
        • Kadosh E.
        • Snir-Alkalay I.
        • Venkatachalam A.
        • et al.
        The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic.
        Nature. 2020; 586: 133-138
        • Kostic A.D.
        • Chun E.
        • Robertson L.
        • et al.
        Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.
        Cell Host Microbe. 2013; 14: 207-215
        • Rubinstein M.R.
        • Wang X.
        • Liu W.
        • Hao Y.
        • Cai G.
        • Han Y.W.
        Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin.
        Cell Host Microbe. 2013; 14: 195-206
        • Arthur J.C.
        • Perez-Chanona E.
        • Mühlbauer M.
        • et al.
        Intestinal inflammation targets cancer-inducing activity of the microbiota.
        Science. 2012; 338: 120-123
        • Cougnoux A.
        • Dalmasso G.
        • Martinez R.
        • et al.
        Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype.
        Gut. 2014; 63: 1932-1942
        • Butt J.
        • Jenab M.
        • Willhauck-Fleckenstein M.
        • et al.
        Prospective evaluation of antibody response to Streptococcus gallolyticus and risk of colorectal cancer.
        Int J Cancer. 2018; 143: 245-252
        • Martins M.
        • Aymeric L.
        • du Merle L.
        • et al.
        Streptococcus gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon.
        J Infect Dis. 2015; 212: 1646-1655
        • Muraoka W.T.
        • Korchagina A.A.
        • Xia Q.
        • et al.
        Campylobacter infection promotes IFNγ-dependent intestinal pathology via ILC3 to ILC1 conversion.
        Mucosal Immunol. 2021; 14: 703-716
        • Mima K.
        • Sukawa Y.
        • Nishihara R.
        • et al.
        Fusobacterium nucleatum and T cells in colorectal carcinoma.
        JAMA Oncol. 2015; 1: 653-661
        • Fu Y.
        • Wang Y.
        • Gao H.
        • et al.
        Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity.
        Mediators Inflamm. 2021; 20218879227
        • Owens J.A.
        • Saeedi B.J.
        • Naudin C.R.
        • et al.
        Lactobacillus rhamnosus GG orchestrates an antitumor immune response.
        Cell Mol Gastroenterol Hepatol. 2021; 12: 1311-1327
        • Gao C.
        • Ganesh B.P.
        • Shi Z.
        • et al.
        Gut microbe-mediated suppression of inflammation-associated colon carcinogenesis by luminal histamine production.
        Am J Pathol. 2017; 187: 2323-2336
        • Mager L.F.
        • Burkhard R.
        • Pett N.
        • et al.
        Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy.
        Science. 2020; 369: 1481-1489
        • Rossi O.
        • Khan M.T.
        • Schwarzer M.
        • et al.
        Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis.
        PLoS One. 2015; 10e0123013
        • Patterson A.M.
        • Mulder I.E.
        • Travis A.J.
        • et al.
        Human gut symbiont Roseburia hominis promotes and regulates innate immunity.
        Front Immunol. 2017; 8: 1166
        • Engevik M.A.
        • Herrmann B.
        • Ruan W.
        • et al.
        Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation.
        Gut Microbes. 2021; 13: 1-21
        • Kwa M.
        • Plottel C.S.
        • Blaser M.J.
        • Adams S.
        The intestinal microbiome and estrogen receptor-positive female breast cancer.
        J Natl Cancer Inst. 2016; 108: djw029
        • Parida S.
        • Sharma D.
        The microbiome-estrogen connection and breast cancer risk.
        Cells. 2019; 8: 1642
        • Ridlon J.M.
        • Ikegawa S.
        • Alves J.M.
        • et al.
        Clostridium scindens: A human gut microbe with a high potential to convert glucocorticoids into androgens.
        J Lipid Res. 2013; 54: 2437-2449
        • Pernigoni N.
        • Zagato E.
        • Calcinotto A.
        • et al.
        Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis.
        Science. 2021; 374: 216-224
        • Schwabe R.F.
        • Jobin C.
        The microbiome and cancer.
        Nat Rev Cancer. 2013; 13: 800-812
        • Seidel D.V.
        • Azcárate-Peril M.A.
        • Chapkin R.S.
        • Turner N.D.
        Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk.
        Semin Cancer Biol. 2017; 46: 191-204
        • Chen Y.
        • Chen Y.X.
        Microbiota-associated metabolites and related immunoregulation in colorectal cancer.
        Cancers (Basel). 2021; 13: 4054
        • Sipe L.M.
        • Chaib M.
        • Pingili A.K.
        • Pierre J.F.
        • Makowski L.
        Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity.
        Immunol Rev. 2020; 295: 220-239
        • Chiba A.
        • Bawaneh A.
        • Velazquez C.
        • et al.
        Neoadjuvant chemotherapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis.
        Mol Cancer Res. 2020; 18: 130-139
        • Shively C.A.
        • Register T.C.
        • Appt S.E.
        • et al.
        Consumption of Mediterranean versus Western diet leads to distinct mammary gland microbiome populations.
        Cell Rep. 2018; 25 (e43): 47-56
        • Carmody R.N.
        • Turnbaugh P.J.
        Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics.
        J Clin Invest. 2014; 124: 4173-4181
        • Boronat A.
        • Rodriguez-Morató J.
        • Serreli G.
        • et al.
        Contribution of biotransformations carried out by the microbiota, drug-metabolizing enzymes, and transport proteins to the biological activities of phytochemicals found in the diet.
        Adv Nutr. 2021; 12: 2172-2189
        • Bisanz J.E.
        • Spanogiannopoulos P.
        • Pieper L.M.
        • Bustion A.E.
        • Turnbaugh P.J.
        How to determine the role of the microbiome in drug disposition.
        Drug Metab Dispos. 2018; 46: 1588-1595
        • Niederberger E.
        • Parnham M.J.
        The impact of diet and exercise on drug responses.
        Int J Mol Sci. 2021; 22: 7692
        • Nayak R.R.
        • Alexander M.
        • Deshpande I.
        • et al.
        Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation.
        Cell Host Microbe. 2021; 29 (e311): 362-377
        • Davar D.
        • Dzutsev A.K.
        • McCulloch J.A.
        • et al.
        Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.
        Science. 2021; 371: 595-602
        • Scott A.J.
        • Alexander J.L.
        • Merrifield C.A.
        • et al.
        International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis.
        Gut. 2019; 68: 1624-1632

      Biography

      P. J. Daschner is a program director, Cancer Immunology, Hematology, and Etiology Branch, Division of Cancer Biology, National Cancer Institute, Bethesda, MD.

      Biography

      S. Ross is a program director, Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.

      Biography

      H. Seifried is a special volunteer, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.

      Biography

      A. Kumar is a program director, Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.

      Biography

      R. Flores is an acting deputy director, Office of Nutrition Research, Division of Program Coordination, Planning and Strategic Initiatives, National Institutes of Health, Bethesda, MD.