
Rebecca A. Stone, MRes; Emma Haycraft, PhD; Jacqueline Blissett, PhD; Claire Farrow, PhD

ABSTRACT

Background Children’s tendency to eat while they are emotional, irrespective of satiety, is termed emotional eating (EE). EE develops early in childhood and has been associated with maternal modelling of EE and food parenting practices. In addition, individual differences in a child’s appetitive traits (ie, food approach behaviors) are related to the development of EE.

Objective The objective of this study was to examine whether or not the previously identified mediating relationship between maternal EE and child EE via maternal use of food as a reward, food for emotion regulation, or restriction of food for health reasons varies as a function of child food approach.

Design A cross-sectional online questionnaire study was conducted.

 Participants/setting One hundred eighty-five mothers of children aged between 3 and 5 years were recruited between January 2020 and March 2020 from advertisements placed on social media in the United Kingdom.

Main outcome measure Questionnaires assessed child EE, child food approach tendencies, maternal EE, and food parenting practices.

Statistical analyses performed Using PROCESS version 3.4, model 14, moderated mediations were employed to assess whether or not child food approach tendencies moderated the mediating effect of controlling food parenting practices between maternal EE and child EE.

Results This study found the relationship between maternal reports of maternal EE and child EE was mediated by maternal use of food as a reward, but only for children with high food approach tendencies ($B = .05, 95\% \text{CI} 0.010$ to $0.101; R^2 = 48\%$). This study also found the relationship between maternal EE and child EE was mediated by maternal use of restriction for health reasons, but only when children showed medium ($B = .02, 95\% \text{CI} 0.004$ to 0.072) to high ($B = .06, 95\% \text{CI} 0.016$ to $0.110; R^2 = 51\%$) food approach tendencies.

Conclusions The potential for the intergenerational transmission of EE via the use of food as a reward and food restriction may be exacerbated when a child has higher food approach behaviors.

J Acad Nutr Diet. 2022;122(8):1465-1473.
Russell and Russell12 proposed a biopsychosocial model to explain the development of children’s eating behavior and weight from infancy to early childhood. This model posits that obesogenic eating behaviors such as EE arise from interactions between biopsychosocial factors, such as genetic susceptibility, temperament, and appetitive traits, as well as psychosocial and behavorial factors, such as food parenting practices.12,13 Early in childhood, parents act as gatekeepers and role models with regard to food.14 The way in which parents consume food themselves may be reflected in how their child consumes food. For example, behavioral modeling occurs through observation and imitation15 and in the case that parents often consume food in response to emotions, they may teach their child that this is an appropriate response. Indeed, previous literature has consistently shown that parental EE is associated with greater child EE.16,17

Similarly, the food parenting practices parents use may inadvertently foster unhealthy eating behaviors in their children.18 Specifically, greater parental use of food as a reward and food for emotion regulation have been associated with greater child EE in cross-sectional10 and longitudinal studies.20 Given that the foods used to regulate children’s emotions and reward behaviors are typically energy-dense,21 children may learn to associate these foods with pleasure and the alleviation of negative emotions,22 promoting future consumption in response to emotional arousal regardless of satiety.23 Similarly, parental restriction of food has been associated with child EE both cross-sectionally24 and longitudinally.25 Parents often restrict child food intake because of concerns about health or weight.26 However, when children are aware that foods are restricted, they often express a greater desire for those foods and greater subsequent intake of them.27 Indeed, these restricted foods can be used by children in situations of emotional arousal as a means of regulating their mood.28

The biopsychosocial model12 also accounts for the influence of child characteristics in predicting early childhood eating behaviors, and this is supported by literature that has shown that child characteristics can shape EE. For example, the prevalence of EE is higher in female compared to male children.28 However, less research has considered the role of child appetitive traits (ie, food approach) in the development of EE. EE is one facet of food approach behavior; other facets include food responsiveness (responding to food cues in the environment and having a greater appetite), desire to drink, and enjoyment of food.29 Food approach behaviors are often associated with child overweight;30 and facets of food approach are all highly correlated with, and predictive of, child EE.20

In Russell and Russell’s reviews,12,13 they suggest that early childhood food approach behaviors evolve out of interactions between child characteristics and parental factors such as food parenting practices. Recent research has supported this proposition by demonstrating that parental restriction of food mediates the relationship between child food approach behaviors and child BMI.31 Furthermore, greater parental use of restriction of food for health reasons has been associated with greater child EE and child food responsiveness.32 These findings suggest that child food approach behaviors may shape parental feeding behaviors (or vice versa), which in turn predict children’s future eating behavior and weight. However, to date there is no study that explores the interactive effects of parent EE, food parenting practices, and other child food approach behaviors on the development of early childhood EE. In this study it was hypothesized that there will be a relationship between greater parent EE and greater child EE, mediated by greater use of parental use of food as a reward, restriction of food for health reasons, and use of food for emotion regulation, but moderated by children’s food approach behavior, such that the mediated relationships would be evident only when children score highly in food approach.

METHODS

Design

This cross-sectional online questionnaire study recruited participants from January 2020 to March 2020. Participants were recruited using convenience sampling from multiple social media platforms in the United Kingdom such as Facebook parenting groups, Twitter, Mumsnet, and Netmums. Several sources of social media were used to reduce selection bias.

Participants

Participants were parents of children aged between 3 and 5 years. Two hundred forty-four parents completed the online study, after data screening the final sample included 185 mothers. The following data were excluded: 45 responses were incomplete; eight responses from fathers because of documented differences between mothers and fathers in food parenting practices and this number was not large enough to make comparisons; and six mothers who reported that they rarely ate with their child, which cast doubt over the validity of their responses. Sample size calculations ($\alpha = 0.05$, power = 0.8) recommended 115 participants to detect medium effect sizes, making the sample adequately powered.

Procedure and Measures

After providing informed consent electronically, participants completed a 20-minute questionnaire via Qualtrics (https://www.qualtrics.com). At the end of the study, they had the opportunity to enter a £50 prize draw for an Amazon voucher thus reducing the chance of nonresponse bias. The study was approved by Aston University’s Health and Life Sciences Ethics Committee. All procedures were conducted in
accordance with the Declaration of Helsinki as revised in 1983. The survey included a battery of questionnaires, detailed below.

Participant Characteristics Questionnaire. Information was collected about maternal age, sex, ethnicity, education level, height, and weight, and child age, sex, height, and weight. The questionnaire also asked about weekly hours of nursery/school attendance, number of siblings, and how often the mother ate with the child. The MacArthur Scale of Subjective Social Status was used to measure perception of social status relative to others using a visual ladder where higher ladder rungs indicate high perceived social status.

Dutch Eating Behaviour Questionnaire. The Dutch Eating Behaviour Questionnaire contains three subscales that measure aspects of mothers’ own eating behavior. One subscale, emotional eating (13 items), was used as the antecedent variable (eg, “Do you have a desire to eat when you are anxious, worried, or tense?”). This was scored using a 5-point Likert scale ranging from 1 = “Never” to 5 = “Very Often” where higher mean scores were indicative of greater EE. The Dutch Eating Behaviour Questionnaire has demonstrated good internal validity in the past and in the current sample Cronbach’s α = .95, indicating acceptable reliability.

Comprehensive Feeding Practices Questionnaire. The Comprehensive Feeding Practices Questionnaire (CFPQ) contains three subscales that measure parents’ food parenting practices. For the current study, only three subscales were used: use of food as a reward (three items) (eg, “I withhold sweets/dessert from my child in response to bad behavior”), use of food for emotion regulation (three items) (eg, “When this child gets fussy, is giving him/her something to eat or drink the first thing you do?”), and restriction of food for health reasons (four items) (eg, “I have to be sure my child does not eat too much of his/her favorite foods”). These subscales operate using a 5-point Likert scale ranging from 1 = “Never” to 5 = “Always” (for use of food for emotion regulation) and 1 = “Disagree” to 5 = “Agree” (for reward and restriction for health reasons). These subscales were chosen because previous research has implicated them in the development of child EE. The CFPQ is a widely used measure and has demonstrated good validity. In the current study, alpha value was acceptable at .75 for use of food for emotion regulation, but for restriction of food for health reasons and for use of food as a reward, alpha value was moderate (.65 and .52). Due to the small number of items in each food parenting practice of the CFPQ, mean interitem correlations were also assessed, given that coefficient alpha is not always a good measure of internal consistency for scales with a small number of items. For use of food for emotion regulation, mean interitem correlation coefficient was 0.50, for restriction of food for health reasons was 0.32, and for use of food as a reward was 0.26; all within the acceptable range of 0.15 to 0.50.

Children’s Eating Behaviour Questionnaire. The Children’s Eating Behaviour Questionnaire (CEBQ) contains eight subscales measuring different aspects of children’s appetite traits; four subscales measure food approach behaviors, and 4 subscales measure food avoidant behavior. For the current study, the four food approach subscales were used: emotional overeating (four items) (eg, “My child eats more when worried”), child food responsiveness (five items) (eg, “My child is always asking for food”), enjoyment of food (four items) (eg, “My child is interested in food”), and desire to drink (three items) (eg, “My child is always asking for a drink”). Child emotional overeating was used as the outcome variable. Food responsiveness, enjoyment of food, and desire to drink were averaged to create a moderating variable: “food approach” (12 items). Items were scored using a 5-point Likert scale (“Never” to “Always”) where higher mean scores were indicative of higher levels of the eating behaviors. The CEBQ has demonstrated good internal reliability and validity. In the current sample, alpha value was acceptable for emotional eating (.84), food responsiveness (.83), enjoyment of food (.90), and desire to drink (.87). Overall, alpha value was acceptable for food approach composite (.85).

Data Analysis

Normality and Confounding Variables. Data were analyzed using IBM SPSS Statistics version 26. To examine the distribution of study variables, Kolmogorov-Smirnov tests were used and revealed that most variables were skewed. As a result, nonparametric tests were used to identify confounding variables and moderated mediations were used in the main analysis with bootstrapping to account for this skewness. Spearman’s Rho correlations showed that greater maternal BMI was significantly correlated with greater antecedent variable maternal EE (r = 0.35; P < 0.01) and outcome variable child EE (r = 0.18; P < 0.05). Mann-Whitney U tests indicated that there were no significant differences in maternal EE or child EE based on child sex or maternal ethnicity (analysis not shown). Kruskal-Wallis tests revealed there were no significant differences in maternal EE or child EE based on maternal education level (analysis not shown). As a result, only maternal BMI was controlled for in the main analyses.

Main Analysis. For the main analysis, moderated mediations were employed using the PROCESS version 3.4 plugin, model 14. Moderated mediations assess the degree to which the effect of antecedent variable (X) on outcome variable (Y) via a mediating variable (M) differs depending on different levels of a moderator variable (W). Moderated mediation is also known as a conditional indirect effect because the effect of X on Y via M (ie, the indirect effect), is conditional on a level (high, medium, or low) of another moderator variable W. PROCESS model 14 uses unstandardized beta coefficients (B) to quantify pathways between variables and these can be either negative or positive. If B is positive, for every 1-unit increase in X, Y increases by B units, whereas if B is negative, for every 1-unit increase in X, Y decreases by B units. Model 14 provides evidence of moderated mediation using Hayes’ index of moderated mediation, which is a quantification of the association between an indirect effect and a moderator. This statistic quantifies the amount by which two cases with the same value of W but that differ by 1 unit on X, are estimated to differ on Y through X’s indirect effect on Y via M. The index of moderated mediation uses CIs to indicate significance and when a 95% bootstrapped CI does not include zero, this indicates the moderated mediation is statistically significant. See Figure 1 for an example of model 14 using the study variables.
Three models were tested using food parenting practices (food as a reward, food for emotion regulation, and restriction for health reasons) as mediators (M), and child food approach as the moderator (W). They were used to assess the relationship between maternal EE (X) and child EE (Y). The language used to describe mediation analyses is causal in its nature, but because the study design is cross-sectional, its use should be interpreted as associations. To reduce multicollinearity (ie, strong correlations between variables), mean-centering was used for all variables. 95% bootstrap CIs at 5,000 samples were used, and child food approach values (M) were considered at low, medium, and high using standard deviations above the mean to indicate “low,” mean to indicate “medium,” and +1 standard deviation above the mean to indicate “high” levels of child food approach for all analyses. Child food approach was conditioned at low, medium, and high using standard deviations, which is standard statistical practice to create levels of a moderator variable. “Low” reflects a score of 2.3 on the CEBQ (ie, “my child is rarely interested in food”), “medium” reflects a score of 2.9 on the CEBQ (ie, “my child is sometimes interested in food”), and “high” reflects a score of 3.5 on the CEBQ (ie, “my child is often interested in food”).

RESULTS
Participant Characteristics and Individual Differences
Participant characteristics and individual difference scores for maternal EE, child EE, food parenting practices, and child food approach are presented in Tables 1 and 2. Mothers had a mean age of 36 years, most described their ethnicity as White, and most were educated to degree level. Mothers had a mean of two children and a middle- to upper-class subjective social status. Children were on average aged 3.8 years with 52% girls and 48% boys. The majority of children attended nursery or school for an average of 26 hours per week.

Exploring the Moderating Role of Food Approach on the Mediating Relationship of Food Parenting Practices between Maternal EE and Child EE
The three moderated mediation models exploring the moderating role of food approach on the mediating relationship of food parenting practices between maternal EE and child EE are presented in Table 3 and conceptualized in Figures 1 and 2. The first and second models yielded significant indexes for moderated mediation and so individual pathways are described, a conceptual diagram is used to illustrate the interaction, and probing statistics are given to convey the nature of this interaction. The “a” pathway remained the same and so is only reported once. The last model yielded a nonsignificant index of moderated mediation and so is reported only briefly.

Mediator: Food as a Reward, Moderator: Food Approach
Taking each path in Figure 1 individually, there was a significant direct effect (c’) of greater maternal EE scores on greater child EE scores where for every 1-unit increase of maternal EE, child EE increased by 0.09 units. There was a significant unconditional effect (a) of greater maternal EE on greater use of food as a reward where for every 1-unit increase of maternal EE, use of food as a reward increased by 0.24 units. There was a nonsignificant effect (b1) of greater use of food as a reward on greater child EE scores where for every 1-unit increase in food as a reward, child EE increased by 0.07 units. There was a significant effect (b2) of child food approach on child EE scores where for every 1-unit increase in child food approach, child EE increased by 0.53 units. The

Figure 1. Conceptual moderated mediation model (PROCESS #14) of the relationship between maternal emotional eating (EE) (X) and child EE (Y) using mediator: Food as a reward (M) and moderator: Child food approach (W). a path = direct effect of maternal EE (X) on child EE (Y) holding use of food as a reward (M) and child food approach (W) constant, b = unconditional effect of maternal EE (X) on use of food as a reward (M), b1 = conditional effect of use of food as a reward (M) on child EE (Y).

Table 1. Participant characteristics and individual differences in food parenting practices, emotional eating, and food approach for mothers and children in a cross-sectional study obtained using questionnaire measures (N = 185)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Mean ± SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (y)</td>
<td>36 ± 4.0</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>Maternal BMIc 15</td>
<td>25.9 ± 6.9</td>
<td>15.9</td>
<td>45.9</td>
</tr>
<tr>
<td>Number of children</td>
<td>2 ± 0.7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Child age (y)</td>
<td>3.8 ± 0.7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Subject social statusc</td>
<td>5.0 ± 1.6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Maternal emotional eating: DEBQd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child emotional eating: CEBQc</td>
<td>1.82 ± 0.66</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Child food approach: CEBQc</td>
<td>2.87 ± 0.61</td>
<td>1.67</td>
<td>5.00</td>
</tr>
<tr>
<td>Food as a reward: CFPQc</td>
<td>2.97 ± 0.96</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Restriction for health reasons: CFPQc</td>
<td>2.87 ± 0.61</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Food for emotion regulation: CFPQc</td>
<td>2.00 ± 0.75</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

*All questionnaires use a 5-point Likert scale with lower scores reflecting a lower use of this behavior, and higher scores reflecting a greater use of this behavior.

BMI = body mass index.

MacArthur’s Scale of Subject Social Status uses ladder rungs to metaphorically represent perceived social status relative to others. Higher rungs indicate higher perceived social status.

DEBQ = Dutch Eating Behaviour Questionnaire.

CEBQ = Children’s Eating Behaviour Questionnaire.

CFPQ = Comprehensive Feeding Practices Questionnaire.
The variance in child EE. The moderated mediation model explained 51% of but only amongst those children who scored high on food approach tendencies because of the significant interaction between use of food for emotion regulation and child food approach on child EE (see Table 3).

The result from the index for moderated mediation was significant and positive (B = .04, standard error = 0.02, 95% CI 0.004 to 0.089), suggesting that there was an indirect effect of greater maternal EE scores on greater child EE scores through greater use of restriction for health reasons as a function of child food approach. Probing the indirect effect at low, medium, and high values of child food approach revealed that the moderated mediation was only significant at medium-high levels of child food approach (see Table 5). Therefore, mothers who had a greater tendency to emotionally eat (eg, by 1 unit) also reported a greater use of restriction for health reasons as a result, and that translated into greater child EE scores (0.03 to 0.06 units for 1-unit increase in maternal EE), but only amongst those children who scored medium-high on food approach. The moderated mediation model explained 48% of the variance in child EE.

Mediator: Food for Emotion Regulation, Moderator: Food Approach

The index for moderated mediation was nonsignificant (B = .04, standard error = 0.03, 95% CI −0.022 to 0.084), suggesting that the indirect effect of maternal EE scores on child EE scores through the use of food for emotion regulation did not vary as a function of child food approach. All pathways are presented in Table 3.

DISCUSSION

This study sought to explore the mechanistic underpinnings of the relationship between maternal EE and child EE by examining the role of food parenting practices and child food approach tendencies. Moderated mediations suggest that greater maternal use of food as a reward and restriction of food for health reasons mediate the relationship between greater maternal and child EE, but that this mediating relationship is only significant for children who are higher in food approach tendencies. These findings support the suggestion that child food approach behaviors are less responsive to a mechanism through which maternal EE may shape child EE, but the findings indicate that the strength of this relationship depends on the child’s own appetitive traits, with children who experience greater food approach behaviors being the most influenced by food parenting practices that use high reward or restriction of food.

This study’s findings concur with previous work that has shown that parent EE is linked to higher use of food as a reward, and that greater use of food as a reward independently predict child EE and are associated with greater child food approach tendencies. They also replicate previous research showing...
that food parenting practices mediate the relationships between maternal and child EE.51 However, this study is the first to explore these variables together in a conceptual model where child characteristics are considered alongside maternal EE and food parenting practices. The novel findings shed light on how children’s eating behavior tendencies interact with maternal feeding behaviors to predict EE, suggesting that children with high food approach tendencies may be the most susceptible to the maladaptive influences of maternal modeling of EE and food parenting practices that are more rewarding and restrictive in nature. Contrary to the hypotheses, the relationship between maternal and child EE via maternal use of food for emotion regulation did not vary as a function of child food approach. Whilst this finding was surprising given previous literature identifying associations between emotional feeding and food approach,42 it may be that there is a more direct relationship between use of food for emotion

Table 3. Moderated mediation models testing the mediating role of food parenting practices in the association between maternal emotional eating (EE) and child EE, and the moderating role of child food approach on this association a

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Food as a reward (M)</th>
<th>Child EE (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Maternal EE (X)</td>
<td>.24</td>
<td>.07</td>
</tr>
<tr>
<td>Food as a reward (M)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Food approach (W)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M × W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Food as a reward, R²m = 0.06, F(2, 182) = 5.67; P = 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restriction for health (M)</td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Maternal EE (X)</td>
<td>.24</td>
<td>.06</td>
</tr>
<tr>
<td>Restriction for health (M)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Food approach (W)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M × W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Restriction for health, R² = 0.10, F(2, 182) = 10.13; P < 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food for emotion regulation (M)</td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Maternal EE (X)</td>
<td>.24</td>
<td>.05</td>
</tr>
<tr>
<td>Food for emotion regulation (M)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Food approach (W)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M × W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Food for emotion regulation, R² = 0.14, F(2, 182) = 14.76; P < 0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAll models control for maternal body mass index for 185 mothers.

bM = mediating variable.
cY = outcome variable.
dB = unstandardized beta.
eSE = standard error.
fdf = degrees of freedom.
gX = antecedent variable.
h = unconditional effect X on M (unconditional as the effect of X on M is not contingent [ie, conditional] on another variable).
i = direct effect of X on Y holding M and W constant.
j = effect of M on Y.
k = effect of W on Y.
l = conditional effect of M on Y (conditional because the effect of M on Y is contingent on W).
m = R² = the amount of variance explained by the model for M and Y.

Child EE, R² = 0.48, F(5, 179) = 33.48; P < 0.001
regulation and child EE, irrespective of the child’s food approach tendencies. The findings are consistent with the biopsychosocial model of overweight and obesity and suggest that child EE forms from complex interactions between appetite traits, genetic susceptibility, and food parenting practices. Previous research has suggested that the heritability of some food approach tendencies is moderate to low, and that food approach behaviors such as EE may be strongly influenced by behavioral and environmental experiences. Interventions that target these experiences may hold promise for reducing EE in children and interventions that target counterproductive food parenting practices (such as use of food as a reward, restriction of food, or emotional feeding) are likely to be helpful for families.

Further work is needed to understand how mothers should respond to children with the highest levels of food approach where families are likely to hold promise for reducing EE in children and interventions that target counterproductive food parenting practices (such as use of food as a reward, restriction of food, or emotional feeding) are likely to be helpful for families.

Table 4. Relationships between maternal emotional eating (EE) and child EE via maternal use of food as a reward at different levels of child food approach

<table>
<thead>
<tr>
<th>Child Food Approach</th>
<th>Effect</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.64 (Low)</td>
<td>−0.02</td>
<td>0.02</td>
<td>−0.053 to 0.005</td>
</tr>
<tr>
<td>0.00 (Medium)</td>
<td>0.02</td>
<td>0.01</td>
<td>−0.003 to 0.041</td>
</tr>
<tr>
<td>0.64 (High)</td>
<td>0.05</td>
<td>0.02</td>
<td>0.010 to 0.101</td>
</tr>
</tbody>
</table>

*The Children’s Eating Behaviour Questionnaire (CEBQ) uses a 5-point Likert scale. Child food approach values are mean centered.

Table 5. Relationships between maternal emotional eating (EE) and child EE via maternal use of restriction of food for health reasons at different levels of child food approach

<table>
<thead>
<tr>
<th>Child food approach</th>
<th>Effect</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.64 (Low)</td>
<td>0.06</td>
<td>0.02</td>
<td>−0.037 to 0.045</td>
</tr>
<tr>
<td>0.00 (Medium)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.004 to 0.072</td>
</tr>
<tr>
<td>0.64 (High)</td>
<td>0.06</td>
<td>0.02</td>
<td>0.016 to 0.110</td>
</tr>
</tbody>
</table>

*The Children’s Eating Behaviour Questionnaire (CEBQ) uses a 5-point Likert scale. Child food approach values are mean centered.

Strengths, Limitations, and Future Directions

Although this study benefits from a large sample size and presents results that are consistent with previous theoretical frameworks, it was constrained by its cross-sectional design, use of maternal reports of mother and child behavior, and the reliance on a relatively homogeneous sample. Future research should seek to explore the models identified in this study at different time points to understand not only the stability, but also the bidirectionality of identified relationships. In addition, use of maternal reports should be supplemented by observational methods given the potential for response bias.

This study was based on a well-educated sample of middle-class White mothers and given the socioeconomic differences in eating behavior and weight, further research is needed with more diverse samples, including male and nonbinary caregivers. Despite the current study identifying statistically significant models, the beta coefficients were small, and the reliability according to coefficient alpha of some questionnaire subscales of the CFPQ were not optimal. Caution must be taken when considering what these findings mean in practical terms for families; clearly there are wider factors beyond those measured in this study that shape child emotional eating. However, these results do provide a starting point to consider the combined relationships between maternal and child factors and how they interact to predict child eating behavior, especially because the moderated mediation models conferred large effect sizes.

CONCLUSIONS

This study used maternal reports to consider the complex mechanism through which maternal EE and child EE are related. The proposed model suggests that according to maternal reports, maternal EE, food parenting practices, and child food approach tendencies interact to predict child EE.
This study illuminates a promising avenue for future work to explore how approaches to reduce child EE should consider the complex interactions that occur between food parenting practices and child appetitive traits that may influencechild EE. Research has already shown that parenting practices around food can help to shape eating behaviors in children, but this study shows that the influence of those parenting practices depends in part on children’s existing food approach tendencies. Further research is needed to understand how these findings can be used to support mothers of children who are more driven to eat and at greater risk of higher levels of EE.

References

AUTHOR INFORMATION

R. A. Stone, J. Blissett, and C. Farrow are with School of Psychology, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom. E. Haycraft is School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Address correspondence to: Claire Farrow, PhD, School of Psychology, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham, B47 ET United Kingdom. E-mail: c.farrow@aston.ac.uk

STATEMENT OF POTENTIAL CONFLICT OF INTEREST

No potential conflict of interest was reported by the authors.

FUNDING/SUPPORT

This research was funded by a PhD studentship from Aston University.

AUTHORS CONTRIBUTIONS

R. A. Stone oversaw data collection, analyzed the data, and had primary responsibility for the final content of the manuscript; all authors contributed to the design of the study, supervision of analysis, and the writing of the manuscript. R. A. Stone was supervised by C. Farrow, J. Blissett, and E. Haycraft.