NOTICE: We are experiencing technical issues with Academy members trying to log into the JAND site using Academy member login credentials. We are working to resolve the issue as soon as possible. Alternatively, if you are an Academy member, you can access the JAND site by registering for an Elsevier account and claiming access using the links at the top of the JAND site. Email us at [email protected] for assistance. Thanks for your patience!

Nutrition Support and the Gastrointestinal Microbiota: A Systematic Review

      Abstract

      Background

      Low microbial diversity or altered microbiota composition is associated with many disease states. In the treatment of many conditions, enteral (EN) or parenteral (PN) nutrition is frequently required.

      Objective

      This systematic review aimed to identify and evaluate the evidence of the effect of EN vs PN on the gastrointestinal microbiota.

      Method

      A comprehensive systematic literature search of 5 databases was completed to review studies published until February 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were utilized in completion of the review with the Academy of Nutrition and Dietetics quality criteria checklist and Grading of Recommendations Assessment, Development and Evaluation to evaluate the included studies. The review was registered on PROSPERO (CRD42018091328). Studies were eligible for inclusion if participants were older than 3 years, patients received either EN, PN or both, with some patients receiving each mode of nutrition support. The main outcome was any assessment of the gastrointestinal microbiota, including diversity or taxa abundance.

      Results

      Eleven articles (n = 367 patients) met the inclusion criteria and were evaluated. Seven studies (n = 237) reported greater abundance of Proteobacteria with the provision of PN compared to EN; 6 studies (n = 172) reported lower Firmicutes and 5 studies (n = 155) lower Bacteroidetes. In 7 studies (n = 282), microbial diversity was lower with provision of PN than EN. The Grading of Recommendations Assessment, Development and Evaluation certainty of evidence was very low.

      Conclusions

      Provision of PN may lead to greater abundance of Proteobacteria and reduced microbial diversity; however, there is limited literature on this topic and additional research is warranted to improve understanding of the impact of EN vs PN on the microbiota.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Correia M.I.
        • Waitzberg D.L.
        The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis.
        Clin Nutr. 2003; 22: 235-239
        • Elke G.
        • van Zanten A.R.
        • Lemieux M.
        • et al.
        Enteral versus parenteral nutrition in critically ill patients: An updated systematic review and meta-analysis of randomized controlled trials.
        Crit Care. 2016; 20
        • Lochs H.
        • Pichard C.
        • Allison S.P.
        Evidence supports nutritional support.
        Clin Nutr. 2006; 25: 177-179
        • Braunschweig C.L.
        • Levy P.
        • Sheean P.M.
        • Wang X.
        Enteral compared with parenteral nutrition: A meta-analysis.
        Am J Clin Nutr. 2001; 74: 534
        • American Society for Parenteral and Enteral Nutrition (ASPEN) Board of Directors
        Clinical guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients.
        JPEN J Parenter Enteral Nutr. 2009; 33: 255-259
        • Jandhyala S.M.
        • Talukdar R.
        • Subramanyam C.
        • Vuyyuru H.
        • Sasikala M.
        • Reddy D.
        Role of the normal gut microbiota.
        World J Gastroenterol. 2015; 21: 8787-8803
        • Junjie Q.
        • Ruiqiang L.
        • Jeroen R.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59
        • Gill P.
        • van Zelm M.C.
        • Muir J.
        • Gibson P.
        Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders.
        Aliment Pharmacol Ther. 2018; 48: 15-34
        • Pu S.
        • Khazanehei H.
        • Jones P.J.
        • Khafipour E.
        Interactions between obesity status and dietary intake of monounsaturated and polyunsaturated oils on human gut microbiome profiles in the Canola Oil Multicenter Intervention Trial (COMIT) (Report).
        Front Microbiol. 2016; 7: 1612
        • Menni C.
        • Zierer J.
        • Pallister T.
        • et al.
        Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women.
        Sci Rep. 2017; 7: 11079
        • Tanya Y.
        • Federico E.R.
        • Mark J.M.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222
        • Ianiro G.
        • Tilg H.
        • Gasbarrini A.
        Antibiotics as deep modulators of gut microbiota: between good and evil.
        Gut. 2016; 65: 1906-1915
        • Manichanh C.
        • Rigottier-Gois L.
        • Bonnaud E.
        • et al.
        Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach.
        Gut. 2006; 55: 205-211
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.J.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults (microbiota and type 2 diabetes).
        PLoS One. 2010; 5e9085
        • Tap J.
        • Derrien M.
        • Törnblom H.
        • et al.
        Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome.
        Gastroenterology. 2017; 152: 111-123.e118
        • Wang L.
        • Alammar N.
        • Singh R.
        • et al.
        Gut microbial dysbiosis in the irritable bowel syndrome: A systematic review and meta-analysis of case-control studies.
        J Acad Nutr Diet. 2020; 120: 565-586
        • Tingting W.
        • Guoxiang C.
        • Yunping Q.
        • et al.
        Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers.
        ISME J. 2011; 6: 320-329
        • Shimizu K.
        • Ogura H.
        • Asahara T.
        • et al.
        Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: A preliminary study.
        Neurogastroenterol Motil. 2011; 23 (330-e157)
        • Ralls M.
        • Demehri F.R.
        • Feng Y.
        • Ignatoski K.
        • Teitelbaum D.
        Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function.
        Surgery. 2015; 157: 732-742
        • Hernandez G.
        • Velasco N.
        • Wainstein C.
        • et al.
        Gut mucosal atrophy after a short enteral fasting period in critically ill patients.
        J Crit Care. 1999; 14: 73-77
        • Macfie J.
        • Reddy B.S.
        • Gatt M.
        • Jain P.K.
        • Sowdi R.
        • Mitchell C.J.
        Bacterial translocation studied in 927 patients over 13 years.
        Br J Surg. 2006; 93: 87-93
        • Lochs H.
        • Allison S.P.
        • Meier R.
        • et al.
        Introductory to the ESPEN guidelines on enteral nutrition: Terminology, definitions and general topics.
        Clin Nutr. 2006; 25: 180-186
        • Schneider S.M.
        • Girard-Pipau F.
        • Anty R.
        • et al.
        Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota.
        Clin Nutr. 2006; 25: 82-90
        • Whelan K.
        • Judd P.A.
        • Preedy V.R.
        • Simmering R.
        • Jann A.
        • Taylor M.A.
        Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans.
        J Nutr. 2005; 135: 1896-1902
        • Benus R.F.J.
        • Van Der Werf T.S.
        • Welling G.W.
        • et al.
        Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects.
        Br J Nutr. 2010; 104: 693-700
        • Koecher K.J.
        • Thomas W.
        • Slavin J.L.
        Healthy subjects experience bowel changes on enteral diets: Addition of a fiber blend attenuates stool weight and gut bacteria decreases without changes in gas.
        JPEN J Parenter Enteral Nutr. 2015; 39: 337-343
        • Wierdsma N.J.
        • Van Bodegraven A.A.
        • Uitdehaag B.M.J.
        • et al.
        Fructo-oligosaccharides and fibre in enteral nutrition has a beneficial influence on microbiota and gastrointestinal quality of life.
        Scand J Gastroenterol. 2009; 44: 804-812
        • Baxter N.T.
        • Schmidt A.W.
        • Venkataraman A.
        • Kim K.S.
        • Waldron C.
        • Schmidt T.M.
        Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers.
        mBio. 2019; 10
        • Tojo R.
        • Suarez A.
        • Clemente M.G.
        • et al.
        Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis.
        World J Gastroenterol. 2014; 20: 15163-15176
        • Gatti S.
        • Galeazzi T.
        • Franceschini E.
        • et al.
        Effects of the exclusive enteral nutrition on the microbiota profile of patients with crohn's disease: A systematic review.
        Nutrients. 2017; 9
        • Kamarul Zaman M.
        • Chin K.F.
        • Rai V.
        • Majid H.A.
        Fiber and prebiotic supplementation in enteral nutrition: A systematic review and meta-analysis.
        World J Gastroenterol. 2015; 21: 5372-5381
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement.
        Br Med J. 2009; (2009:):2535)
        • Handu D.
        • Moloney L.
        • Wolfram T.
        • Ziegler P.
        • Acosta A.
        • Steiber A.
        Academy of Nutrition and Dietetics methodology for conducting systematic reviews for the Evidence Analysis Library.
        J Acad Nutr Diet. 2016; 116: 311-318
        • Guyatt G.H.
        • Oxman A.D.
        • Vist G.E.
        • et al.
        GRADE: An emerging consensus on rating quality of evidence and strength of recommendations (Grading of Recommendations Assessment, Development and Evaluation).
        Br Med J. 2008; 336: 924
        • Andersen S.
        • Staudacher H.
        • Weber N.
        • et al.
        Pilot study investigating the effect of enteral and parenteral nutrition on the gastrointestinal microbiome post-allogeneic transplantation.
        Br J Haematol. 2020; 188: 570-581
        • Boccia S.
        • Torre I.
        • Santarpia L.
        • et al.
        Intestinal microbiota in adult patients with short bowel syndrome: Preliminary results from a pilot study.
        Clin Nutr. 2017; 36: 1707-1709
        • Budinska E.
        • Gojda J.
        • Heczkova M.
        • et al.
        Microbiome and metabolome profiles associated with different types of short bowel syndrome: Implications for treatment.
        JPEN J Parenter Enteral Nutr. 2020; 44: 105-118
        • D’Amico F.
        • Biagi E.
        • Rampelli S.
        • et al.
        Enteral nutrition in pediatric patients undergoing hematopoietic SCT promotes the recovery of gut microbiome homeostasis.
        Nutrients. 2019; 11
        • de Castro Furtado E.
        • Marchini J.S.
        • da Fonseca C.K.
        • et al.
        Cyclic parenteral nutrition does not change the intestinal microbiota in patients with short bowel syndrome.
        Acta Cir Bras. 2013; 28: 26-32
        • Dowhaniuk J.K.
        • Szamosi J.
        • Chorlton S.
        • et al.
        Starving the gut: A deficit of butyrate in the intestinal ecosystem of children with intestinal failure.
        JPEN J Parenter Enteral Nutr. 2019 Oct 22; ([Epub ahead of print])
        • Huang Y.
        • Guo F.
        • Li Y.
        • Wang J.
        • Li J.
        Fecal microbiota signatures of adult patients with different types of short bowel syndrome.
        J Gastroenterol Hepatol. 2017; 32: 1949-1957
        • Korpela K.
        • Mutanen A.
        • Salonen A.
        • Savilahti E.
        • De Vos W.M.
        • Pakarinen M.P.
        Intestinal microbiota signatures associated with histological liver steatosis in pediatric-onset intestinal failure.
        JPEN J Parenter Enteral Nutr. 2017; 41: 238-248
        • Lilja H.E.
        • Wefer H.
        • Nystrom N.
        • Finkel Y.
        • Engstrand L.
        Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome.
        Microbiome. 2015; 3
        • Schneider S.M.
        • Le Gall P.
        • Girard-Pipau F.
        • et al.
        Total artificial nutrition is associated with major changes in the fecal flora.
        Eur J Nutr. 2000; 39: 248-255
        • Shiga H.
        • Kajiura T.
        • Shinozaki J.
        • et al.
        Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition.
        Dig Liver Dis. 2012; 44: 736-742
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635
        • Rizzatti G.
        • Lopetuso L.R.
        • Gibiino G.
        • Binda C.
        • Gasbarrini A.
        Proteobacteria: A common factor in human diseases.
        BioMed Res Int. 2017; 2017
        • Deehan E.C.D.
        • Rebbeca M.
        • Armet A.M.
        • et al.
        Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health.
        Microbiol Spectr. 2017; 5
        • den Besten G.
        • van Eunen K.
        • Groen A.K.
        • Venema K.
        • Reijngoud D.
        • Bakker B.M.
        The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.
        J Lipid Res. 2013; 54: 2325-2340
        • Chung Y.-C.
        • Hsu C.-K.
        • Ko C.-Y.
        • Chan Y.-C.
        Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly.
        Nutr Res. 2007; 27: 756-761
        • Duncan S.H.
        • Louis P.
        • Thomson J.M.
        • Flint H.J.
        The role of pH in determining the species composition of the human colonic microbiota.
        Environ Microbiol. 2009; 11: 2112-2122
        • Wolin M.J.
        Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid.
        Appl Microbiol. 1969; 17: 83-87
        • Hayakawa M.
        • Asahara T.
        • Henzan N.
        • et al.
        Dramatic changes of the gut flora immediately after severe and sudden insults.
        Dig Dis Sci. 2011; 56: 2361-2365
        • Buchman A.L.
        • Moukarzel A.A.
        • Bhuta S.
        • et al.
        Parenteral nutrition is associated with intestinal morphologic and functional changes in humans.
        JPEN J Parenter Enteral Nutr. 1995; 19: 453-460
        • D'Antiga L.
        • Dhawan A.
        • Davenport M.
        • Mieli-Vergani G.
        • Bjarnason I.
        Intestinal absorption and permeability in paediatric short-bowel syndrome: A pilot study.
        J Pediatr Gastroenterol Nutr. 1999; 29: 588-593
        • Heiman M.L.
        • Greenway F.L.
        A healthy gastrointestinal microbiome is dependent on dietary diversity.
        Mol Metab. 2016; 5: 317-320
        • Fraher M.H.
        • O'Toole P.W.
        • Quigley E.M.
        Techniques used to characterize the gut microbiota: A guide for the clinician.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 312-322
        • Sankar S.A.
        • Lagier J.C.
        • Pontarotti P.
        • Raoult D.
        • Fournier P.E.
        The human gut microbiome, a taxonomic conundrum.
        Syst Appl Microbiol. 2015; 38: 276-286
        • Biagi E.
        • Zama D.
        • Nastasi C.
        • et al.
        Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT.
        Bone Marrow Transplant. 2015; 50: 992-998
        • Joly F.
        • Mayeur C.
        • Bruneau A.
        • et al.
        Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome.
        Biochimie. 2010; 92: 753-761
        • Taur Y.
        • Xavier J.B.
        • Lipuma L.
        • et al.
        Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation.
        Clin Infect Dis. 2012; 55: 905-914
        • McClave S.A.
        • Martindale R.G.
        Why do current strategies for optimal nutritional therapy neglect the microbiome?.
        Nutrition. 2019; 60: 100-105
        • Shimizu K.
        • Ogura H.
        • Hamasaki T.
        • et al.
        Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome.
        Dig Dis Sci. 2011; 56: 1171-1177

      Biography

      S. Andersen is a senior dietitian, Nutrition and Dietetics, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia, and a PhD candidate, School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.

      Biography

      M. Banks is director, Nutrition and Dietetics, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia; and an adjunct associate professor, School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.

      Biography

      J. Bauer is an associate professor, Nutrition and Dietetics, School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.