NOTICE: We are experiencing technical issues with Academy members trying to log into the JAND site using Academy member login credentials. We are working to resolve the issue as soon as possible. Alternatively, if you are an Academy member, you can access the JAND site by registering for an Elsevier account and claiming access using the links at the top of the JAND site. Email us at [email protected] for assistance. Thanks for your patience!

Sucralose Consumption over 2 Weeks in Healthy Subjects Does Not Modify Fasting Plasma Concentrations of Appetite-Regulating Hormones: A Randomized Clinical Trial

      Abstract

      Background

      The effect of nonnutritive sweeteners on appetite is controversial. Some studies have found changes in certain appetite control hormones with sucralose intake that may be through interaction with sweet taste receptors located in the intestine.

      Objective

      The aim of this study was to evaluate whether sucralose consumption could produce changes in fasting plasma concentrations of appetite-regulating hormones, including glucagon-like peptide 1, ghrelin, peptide tyrosine tyrosine, and leptin, and secondarily in insulin resistance.

      Design

      A 2-week parallel randomized clinical trial with an additional visit conducted 1 week after dosing termination.

      Participants/setting

      Sixty healthy, normal-weight individuals, without habitual consumption of nonnutritive sweeteners were recruited from July 2015 to March 2017 in Mexico City.

      Intervention

      Daily sucralose consumption at 15% of the acceptable daily intake by using commercial sachets added to food. The control group followed the same protocol without an intervention.

      Main outcomes measured

      Fasting concentrations of appetite regulating hormones before and after the intervention. Fasting glucose and insulin concentrations were measured to assess insulin resistance as a secondary outcome.

      Statistical analysis performed

      Basal and final concentrations were compared using Wilcoxon matched-pairs test and Mann-Whitney U test for analysis between groups. Repeated measures analysis of variance was used to evaluate changes in the homeostasis model assessment of insulin resistance.

      Results

      Sucralose was not associated with changes in any of the hormones measured. One week postintervention, an incremental change (P=0.04) in the homeostasis model assessment of insulin resistance was found in the intervention group.

      Conclusions

      Sucralose intake is not associated with changes in fasting concentrations of glucagon-like peptide 1, ghrelin, peptide tyrosine tyrosine, or leptin. An increase in the homeostasis model assessment of insulin resistance observed only at 1 week postdosing is of unknown clinical significance, if any.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • AlDeeb O.A.A.
        • Mahgoub H.
        • Foda N.H.
        Sucralose.
        Profiles Drug Subst Excip Relat Methodol. 2013; 38: 423-462
        • Romo-Romo A.
        • Aguilar-Salinas C.A.
        • Brito-Córdova G.X.
        • Gómez Díaz R.A.
        • Vilchis Valentín D.
        • Almeda-Valdes P.
        Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: Systematic review of observational prospective studies and clinical trials.
        PLoS One. 2016; 11e0161264
        • Hall W.L.
        • Millward D.J.
        • Rogers P.J.
        • Morgan L.M.
        Physiological mechanisms mediating aspartame-induced satiety.
        Physiol Behav. 2003; 78: 557-562
        • Anton S.D.
        • Martin C.K.
        • Han H.
        • et al.
        Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels.
        Appetite. 2010; 55: 37-43
        • Ford H.E.
        • Peters V.
        • Martin N.M.
        • et al.
        Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects.
        Eur J Clin Nutr. 2011; 65: 508-513
        • Brown A.W.
        • Bohan Brown M.M.
        • Onken K.L.
        • Beitz D.C.
        Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women.
        Nutr Res. 2011; 31: 882-888
        • Steinert R.E.
        • Frey F.
        • Töpfer A.
        • Drewe J.
        • Beglinger C.
        Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides.
        Br J Nutr. 2011; 105: 1320-1328
        • Maersk M.
        • Belza A.
        • Holst J.J.
        • et al.
        Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial.
        Eur J Clin Nutr. 2012; 66: 523-529
        • Bryant C.E.
        • Wasse L.K.
        • Astbury N.
        • Nandra G.
        • McLaughlin J.T.
        Non-nutritive sweeteners: No class effect on the glycaemic or appetite responses to ingested glucose.
        Eur J Clin Nutr. 2014; 68: 629-631
        • Sylvetsky A.C.
        • Brown R.J.
        • Blau J.E.
        • Walter M.
        • Rother K.I.
        Hormonal responses to non-nutritive sweeteners in water and diet soda.
        Nutr Metab (Lond). 2016; 13: 71
        • Calvo S.S.-C.
        • Egan J.M.
        The endocrinology of taste receptors.
        Nat Rev Endocrinol. 2015; 11: 213-227
        • Rother K.I.
        • Conway E.M.
        • Sylvetsky A.C.
        How non-nutritive sweeteners influence hormones and health.
        Trends Endocrinol Metab. 2018; 29: 455-467
        • Brown R.J.
        • Walter M.
        • Rother K.I.
        Effects of diet soda on gut hormones in youths with diabetes.
        Diabetes Care. 2012; 35: 959-964
        • Temizkan S.
        • Deyneli O.
        • Yasar M.
        • et al.
        Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes.
        Eur J Clin Nutr. 2015; 69: 162-166
        • Lertrit A.
        • Srimachai S.
        • Saetung S.
        • et al.
        Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: A randomized, double-blind, placebo-controlled trial.
        Nutrition. 2018; 55-56: 125-130
        • Ahmad S.Y.
        • Friel J.K.
        • MacKay D.S.
        The effect of the artificial sweeteners on glucose metabolism in healthy adults: A randomized double-blinded crossover clinical trial.
        Appl Physiol Nutr Metab. 2019 November 7; ([Epub ahead of print])
        • Rogers P.J.
        • Hogenkamp P.S.
        • de Graaf C.
        • et al.
        Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies.
        Int J Obes (Lond). 2016; 40: 381-394
        • Toews I.
        • Lohner S.
        • Küllenberg de Gaudry D.
        • Sommer H.
        • Meerpohl J.J.
        Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies.
        BMJ. 2019; 364: k4718
        • Azad M.B.
        • Abou-Setta A.M.
        • Chauhan B.F.
        • et al.
        Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies.
        Can Med Assoc J. 2017; 189: E929-E939
        • Miller P.E.
        • Perez V.
        Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies.
        Am J Clin Nutr. 2014; 100: 765-777
        • Romo-Romo A.
        • Aguilar-Salinas C.A.
        • Brito-Córdova G.X.
        • Gómez-Díaz R.A.
        • Almeda-Valdes P.
        Sucralose decreases insulin sensitivity in healthy subjects: A randomized controlled trial.
        Am J Clin Nutr. 2018; 108: 485-491
        • American Diabetes Association
        2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020.
        Diabetes Care. 2020; 43: S14-S31
        • World Health Organization
        Sucralose. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA).
        • López-Alvarenga J.
        • Reyes-Díaz S.
        • Castillo-Martínez L.
        • Dávalos-Ibáñez A.
        • González-Barranco J.
        Reproducibilidad y sensibilidad de un cuestionario de actividad física en población mexicana [article in Spanish].
        Salud Publica Mex. 2001; 43: 306-312
      1. Food Processor Analysis Software [computer program]. Version 11.4.412. ESHA Research, Salem, OR2016
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Levy J.C.
        • Matthews D.R.
        • Hermans M.P.
        Correct homeostasis model assessment (HOMA) evaluation uses the computer program.
        Diabetes Care. 1998; 21: 2191-2192
      2. IBM SPSS Statistics for Windows [computer program]. Version 25.0. IBM Corp, Armonk, NY2017
        • Pepino M.Y.
        • Tiemann C.D.
        • Patterson B.W.
        • Wice B.M.
        • Klein S.
        Sucralose affects glycemic and hormonal responses to an oral glucose load.
        Diabetes Care. 2013; 36: 2530-2535
        • Margolskee R.F.
        • Dyer J.
        • Kokrashvili Z.
        • et al.
        T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1.
        Proc Natl Acad Sci U S A. 2007; 104: 15075-15080
        • Mace O.J.
        • Affleck J.
        • Patel N.
        • Kellett G.L.
        Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2.
        J Physiol. 2007; 582: 379-392
        • Jang H.-J.
        • Kokrashvili Z.
        • Theodorakis M.J.
        • et al.
        Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1.
        Proc Natl Acad Sci U S A. 2007; 104: 15069-15074
        • Daly K.
        • Al-Rammahi M.
        • Arora D.K.
        • et al.
        Expression of sweet receptor components in equine small intestine: Relevance to intestinal glucose transport.
        Am J Physiol Integr Comp Physiol. 2012; 303: R199-R208
        • Ma J.
        • Bellon M.
        • Wishart J.M.
        • et al.
        Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects.
        Am J Physiol Gastrointest Liver Physiol. 2009; 296: G735-G739
        • Ma J.
        • Chang J.
        • Checklin H.L.
        • et al.
        Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects.
        Br J Nutr. 2010; 104: 803-806
        • Wu T.
        • Zhao B.R.
        • Bound M.J.
        • et al.
        Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans.
        Am J Clin Nutr. 2012; 95: 78-83
        • Subaran S.C.
        • Sauder M.A.
        • Chai W.
        • et al.
        GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans.
        Clin Sci (Lond). 2014; 127: 163-170
        • Asmar M.
        New physiological effects of the incretin hormones GLP-1 and GIP.
        Dan Med Bull. 2011; 58: B4248
        • Thomson P.
        • Santibañez R.
        • Aguirre C.
        • Galgani J.E.
        • Garrido D.
        Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults.
        Br J Nutr. 2019; 122: 856-862
        • Grotz V.L.
        • Pi-Sunyer X.
        • Porte D.
        • Roberts A.
        • Richard Trout J.
        A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis.
        Regul Toxicol Pharmacol. 2017; 88: 22-33
        • Mezitis N.H.
        • Maggio C.A.
        • Koch P.
        • Quddoos A.
        • Allison D.B.
        • Pi-Sunyer F.X.
        Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes.
        Diabetes Care. 1996; 19: 1004-1005
        • Grotz V.L.
        • Henry R.R.
        • McGill J.B.
        • et al.
        Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes.
        J Am Diet Assoc. 2003; 103: 1607-1612
        • Abou-Donia M.B.
        • El-Masry E.M.
        • Abdel-Rahman A.A.
        • McLendon R.E.
        • Schiffman S.S.
        Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats.
        J Toxicol Environ Health A. 2008; 71: 1415-1429
        • Uebanso T.
        • Ohnishi A.
        • Kitayama R.
        • et al.
        Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice.
        Nutrients. 2017; 9: 560
        • Bian X.
        • Chi L.
        • Gao B.
        • Tu P.
        • Ru H.
        • Lu K.
        Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice.
        Front Physiol. 2017; 8: 487
        • Wang Q.-P.
        • Browman D.
        • Herzog H.
        • Neely G.G.
        Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice.
        PLoS One. 2018; 13e0199080
        • Nichol A.D.
        • Holle M.J.
        • An R.
        Glycemic impact of non-nutritive sweeteners: A systematic review and meta-analysis of randomized controlled trials.
        Eur J Clin Nutr. 2018; 72: 796-804
        • Risdon S.
        • Roustit M.
        • Meyer G.
        • Walther G.
        Is fasting blood glucose a reliable parameter to investigate the effect of non-nutritive sweeteners on glucose metabolism?.
        Eur J Clin Nutr. 2019; 73: 331-332
        • Baird I.M.
        • Shephard N.W.
        • Merritt R.J.
        • Hildick-Smith G.
        Repeated dose study of sucralose tolerance in human subjects.
        Food Chem Toxicol. 2000; 38: S123-S129
        • Grotz V.L.
        • Munro I.C.
        An overview of the safety of sucralose.
        Regul Toxicol Pharmacol. 2009; 55: 1-5
        • Hirsch A.R.
        Migraine triggered by sucralose-a case report.
        Headache J Head Face Pain. 2007; 47 (447-447)
        • Patel R.M.
        • Sarma R.
        • Grimsley E.
        Popular sweetner sucralose as a migraine trigger.
        Headache J Head Face Pain. 2006; 46: 1303-1304
        • Riera C.E.
        • Vogel H.
        • Simon S.A.
        • Coutre J.
        Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.
        AJP Regul Integr Comp Physiol. 2007; 293: R626-R634
        • Kille J.W.
        • Tesh J.M.
        • McAnulty P.A.
        • et al.
        Sucralose: Assessment of teratogenic potential in the rat and the rabbit.
        Food Chem Toxicol. 2000; 38: S43-S52
        • Spencer M.
        • Gupta A.
        • Dam L.V.
        • Shannon C.
        • Menees S.
        • Chey W.D.
        Artificial sweeteners: A systematic review and primer for gastroenterologists.
        J Neurogastroenterol Motil. 2016; 22: 168-180

      Biography

      A. Romo-Romo is researcher, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      M. G. López-Carrasco is researcher, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      G. X. Brito-Córdova is researcher, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      P. Almeda-Valdes is researcher, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      L. E. Guillén-Pineda is a chemist, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      F. J. Gómez-Pérez is chief of department, Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      C. A. Aguilar-Salinas is chief of division, División de Nutrición, Unidad de Investigación en Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

      Biography

      R. A. Gómez-Díaz is a researcher. Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.