Advertisement

Diet Affects the Gastrointestinal Microbiota and Health

Published:March 18, 2020DOI:https://doi.org/10.1016/j.jand.2019.12.016
      Diet is recognized as a key environmental contributor to the structure and function of the human gastrointestinal microbiota. Indeed, a large body of research demonstrates that consumption of dietary fibers and prebiotics results in changes in the abundances of gut microbes, as well their production of short-chain fatty acids,
      • Holscher H.D.
      Dietary fiber and prebiotics and the gastrointestinal microbiota.
      which are linked to a range of health benefits.
      • Alexander C.
      • Swanson K.S.
      • Fahey G.C.
      • Garleb K.A.
      Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation.
      Research on the microbiota is also expanding beyond fibers and prebiotics to whole foods, dietary patterns, diet quality, eating behaviors, and food preparation methods. Diets that contain lots of different types of plants have been cross-sectionally linked to greater gut bacteria diversity,
      • McDonald D.
      • Hyde E.
      • Debelius J.W.
      • et al.
      American gut: An open platform for citizen science microbiome research.
      and intervention trials have demonstrated that certain fruits and vegetables,
      • Klinder A.
      • Shen Q.
      • Heppel S.
      • Lovegrove J.A.
      • Rowland I.
      • Tuohy K.M.
      Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.
      nuts,
      • Ukhanova M.
      • Wang X.
      • Baer D.J.
      • Novotny J.A.
      • Fredborg M.
      • Mai V.
      Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.
      and grains
      • Martínez I.
      • Lattimer J.M.
      • Hubach K.L.
      • et al.
      Gut microbiome composition is linked to whole grain-induced immunological improvements.
      differentially impact the gut microbiota and human health. Furthermore, eating behaviors,
      • Kaczmarek J.L.
      • Musaad S.M.
      • Holscher H.D.
      Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota.
      as well as food processing
      • Holscher H.D.
      • Taylor A.M.
      • Swanson K.S.
      • Novotny J.A.
      • Baer D.J.
      Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: A randomized controlled trial.
      and cooking,
      • Carmody R.N.
      • Bisanz J.E.
      • Bowen B.P.
      • et al.
      Cooking shapes the structure and function of the gut microbiome.
      have each been shown to be relevant factors in host-microbe interactions. This special issue of the Journal of the Academy of Nutrition and Dietetics on gut health and nutrition is timely because it includes articles that summarize research on the gut microbiota and whole, plant foods,
      • Willis H.J.
      • Slavin J.L.
      The influence of diet interventions using whole, plant food on the gut microbiome: A narrative review.
      prebiotics,
      • Colantonio A.G.
      • Werner S.L.
      • Brown M.
      The effects of prebiotics and substances with prebiotic properties on metabolic and inflammatory biomarkers in individuals with type 2 diabetes mellitus: A systematic review.
      and probiotics,
      • Mohr A.E.
      • Basile A.J.
      • Crawford M.S.
      • Sweazea K.L.
      • Carpenter K.C.
      Probiotic supplementation has a limited effect on circulating immune and inflammatory markers in healthy adults: A systematic review of randomized controlled trials.
      as well as gastrointestinal disorders
      • Wang L.
      • Alammar N.
      • Singh R.
      • et al.
      Gut microbial dysbiosis in the irritable bowel syndrome: A systematic review and meta-analysis of case-control studies.
      ,
      • Sandall A.M.
      • Wall C.L.
      • Lomer M.C.E.
      Nutrition assessment in Crohn’s disease using anthropometric, biochemical, and dietary indexes: A narrative review.
      ; the original research reports expand our understanding of connections between diet and the microbiota in children,
      • Herman D.R.
      • Rhoades N.
      • Mercado J.
      • Argueta P.
      • Lopez U.
      • Flores G.E.
      Dietary habits of 2- to 9-year-old American children are associated with gut microbiome composition.
      host-microbe interactions that may influence body composition in adults,
      • Frugé A.D.
      • Van der Pol W.
      • Rogers L.Q.
      • Morrow C.D.
      • Tsuruta Y.
      • Demark-Wahnefried W.
      Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial.
      and low fermentable oligo-, di-, and mono-saccharides and polyols (FODMAP) diets.
      • Staudacher H.M.
      • Ralph F.S.E.
      • Irving P.M.
      • Whelan K.
      • Lomer M.C.E.
      Nutrient intake, diet quality, and diet diversity in irritable bowel syndrome and the impact of the low FODMAP diet.
      ,
      • Eswaran S.
      • Dolan R.D.
      • Ball S.C.
      • Jackson K.
      • Chey W.
      The impact of a 4-week low-FODMAP and mNICE diet on nutrient intake in a sample of US adults with irritable bowel syndrome with diarrhea.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holscher H.D.
        Dietary fiber and prebiotics and the gastrointestinal microbiota.
        Gut Microbes. 2017; 8: 172-184
        • Alexander C.
        • Swanson K.S.
        • Fahey G.C.
        • Garleb K.A.
        Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation.
        Adv Nutr. 2019; 10: 576-589
        • McDonald D.
        • Hyde E.
        • Debelius J.W.
        • et al.
        American gut: An open platform for citizen science microbiome research.
        mSystems. 2018; 3
        • Klinder A.
        • Shen Q.
        • Heppel S.
        • Lovegrove J.A.
        • Rowland I.
        • Tuohy K.M.
        Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.
        Food Funct. 2016; 7: 1788-1796
        • Ukhanova M.
        • Wang X.
        • Baer D.J.
        • Novotny J.A.
        • Fredborg M.
        • Mai V.
        Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.
        Br J Nutr. 2014; 111: 2146-2152
        • Martínez I.
        • Lattimer J.M.
        • Hubach K.L.
        • et al.
        Gut microbiome composition is linked to whole grain-induced immunological improvements.
        ISME J. 2013; 7: 269-280
        • Kaczmarek J.L.
        • Musaad S.M.
        • Holscher H.D.
        Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota.
        Am J Clin Nutr. 2017; 106: 1220-1231
        • Holscher H.D.
        • Taylor A.M.
        • Swanson K.S.
        • Novotny J.A.
        • Baer D.J.
        Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: A randomized controlled trial.
        Nutrients. 2018; 10: 126
        • Carmody R.N.
        • Bisanz J.E.
        • Bowen B.P.
        • et al.
        Cooking shapes the structure and function of the gut microbiome.
        Nat Microbiol. 2019; 4: 2052-2063
        • Willis H.J.
        • Slavin J.L.
        The influence of diet interventions using whole, plant food on the gut microbiome: A narrative review.
        J Acad Nutr Diet. 2020; 120: 608-623
        • Colantonio A.G.
        • Werner S.L.
        • Brown M.
        The effects of prebiotics and substances with prebiotic properties on metabolic and inflammatory biomarkers in individuals with type 2 diabetes mellitus: A systematic review.
        J Acad Nutr Diet. 2020; 120: 587-607
        • Mohr A.E.
        • Basile A.J.
        • Crawford M.S.
        • Sweazea K.L.
        • Carpenter K.C.
        Probiotic supplementation has a limited effect on circulating immune and inflammatory markers in healthy adults: A systematic review of randomized controlled trials.
        J Acad Nutr Diet. 2020; 120: 548-564
        • Wang L.
        • Alammar N.
        • Singh R.
        • et al.
        Gut microbial dysbiosis in the irritable bowel syndrome: A systematic review and meta-analysis of case-control studies.
        J Acad Nutr Diet. 2020; 120: 565-586
        • Sandall A.M.
        • Wall C.L.
        • Lomer M.C.E.
        Nutrition assessment in Crohn’s disease using anthropometric, biochemical, and dietary indexes: A narrative review.
        J Acad Nutr Diet. 2020; 120: 624-640
        • Herman D.R.
        • Rhoades N.
        • Mercado J.
        • Argueta P.
        • Lopez U.
        • Flores G.E.
        Dietary habits of 2- to 9-year-old American children are associated with gut microbiome composition.
        J Acad Nutr Diet. 2020; 120: 517-534
        • Frugé A.D.
        • Van der Pol W.
        • Rogers L.Q.
        • Morrow C.D.
        • Tsuruta Y.
        • Demark-Wahnefried W.
        Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial.
        J Acad Nutr Diet. 2020; 120: 650-659
        • Staudacher H.M.
        • Ralph F.S.E.
        • Irving P.M.
        • Whelan K.
        • Lomer M.C.E.
        Nutrient intake, diet quality, and diet diversity in irritable bowel syndrome and the impact of the low FODMAP diet.
        J Acad Nutr Diet. 2020; 120: 535-547
        • Eswaran S.
        • Dolan R.D.
        • Ball S.C.
        • Jackson K.
        • Chey W.
        The impact of a 4-week low-FODMAP and mNICE diet on nutrient intake in a sample of US adults with irritable bowel syndrome with diarrhea.
        J Acad Nutr Diet. 2020; 120: 641-649
        • Kritchevsky D.
        Dietary fiber.
        Med Clin North Am. 1988; 8: 301-328
        • Gasbarrini G.
        • Bonvicini F.
        • Gramenzi A.
        Probiotics History.
        J Clin Gastroenterol. 2016; 50: S116-S119
        • Burkitt D.
        • Walker A.
        • Painter N.
        Fiber and disease.
        J Am Med Assoc. 1974; 229: 1068-1074
        • Shanahan F.
        Fiber man meets microbial man.
        Am J Clin Nutr. 2015; 101: 1-2
        • Klurfeld D.M.
        • Davis C.D.
        • Karp R.W.
        • et al.
        Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome.
        Am J Physiol Metab. 2018; 315: E1087-E1097
        • Consortium H.M.P.
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Human Microbiome Project Consortium
        A framework for human microbiome research.
        Nature. 2012; 486: 215-221
        • Qin J.
        • Li R.
        • Raes J.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59-65
        • Klaassens E.S.
        • Morrison M.
        • Highlander S.K.
        Selection and sequencing of strains as references for human microbiome studies.
        in: Metagenomics of the Human Body. Springer, New York, NY2011: 79-90
        • McBurney M.I.
        • Davis C.
        • Fraser C.M.
        • et al.
        Establishing what constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions.
        J Nutr. 2019; 149: 1882-1895
        • Bolyen E.
        • Rideout J.R.
        • Dillon M.R.
        • et al.
        Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
        Nat Biotechnol. 2019; 37: 852-857
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • et al.
        Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541
        • Zeevi D.
        • Korem T.
        • Zmora N.
        • et al.
        Personalized nutrition by prediction of glycemic responses.
        Cell. 2015; 163: 1079-1094
        • Mendes-Soares H.
        • Raveh-Sadka T.
        • Azulay S.
        • et al.
        Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes.
        JAMA Netw Open. 2019; 2: e188102
        • Rondanelli M.
        • Faliva M.A.
        • Perna S.
        • Giacosa A.
        • Peroni G.
        • Castellazzi A.M.
        Using probiotics in clinical practice: Where are we now? A review of existing meta-analyses.
        Gut Microbes. 2017; 8: 521
        • Scott K.P.
        • Gratz S.W.
        • Sheridan P.O.
        • Flint H.J.
        • Duncan S.H.
        The influence of diet on the gut microbiota.
        Pharmacol Res. 2013; 69: 52-60
        • Wahlstrom A.
        • Sayin S.I.
        • Marschall H.U.
        • Backhed F.
        Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.
        Cell Metab. 2016; 24: 41-50
        • Lombard V.
        • Ramulu H.G.
        • Drula E.
        • et al.
        The carbohydrate-active enzymes database (CAZy) in 2013.
        Nucleic Acids Res. 2014; 42: D490-D495
        • Wu G.D.
        • Chen Ju
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-109
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2013; 505: 559-563
        • Institute of Medicine
        Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids.
        National Academies Press, Washington, DC2005
        • Trumbo P.
        • Schlicker S.
        • Yates A.A.
        • Poos M.
        Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids.
        J Am Diet Assoc. 2002; 102: 1621-1630
        • Bailey M.A.
        • Holscher H.D.
        Microbiome-mediated effects of the Mediterranean diet on inflammation.
        Adv Nutr. 2018; 9: 193-206
        • Bowyer R.
        • Jackson M.
        • Pallister T.
        • et al.
        Use of dietary indices to control for diet in human gut microbiota studies.
        Microbiome. 2018; 6: 77
        • Berding K.
        • Holscher H.D.
        • Arthur A.E.
        • Donovan S.M.
        Fecal microbiome composition and stability in 4- to 8-year old children is associated with dietary patterns and nutrient intake.
        J Nutr Biochem. 2018; 56: 165-174
        • Claesson M.
        • Jeffery I.
        • Conde S.
        • et al.
        Gut microbiota composition correlates with diet and health in the elderly.
        Nature. 2012; 488: 178-184
        • Shikany J.M.
        • Demmer R.T.
        • Johnson A.J.
        • et al.
        Association of dietary patterns with the gut microbiota in older, community-dwelling men.
        Am J Clin Nutr. 2019; 110: 1003-1014
        • Bourquin L.D.
        • Titgemeyer E.C.
        • Fahey Jr., G.C.
        Vegetable fiber fermentation by human fecal bacteria: Cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.
        J Nutr. 1993; 123: 860-869
        • Bourquin L.D.
        • Titgemeyer E.C.
        • Fahey G.C.
        Fermentation of various dietary fiber sources by human fecal bacteria.
        Nutr Res. 1996; 16: 1119-1131
        • Kaczmarek J.L.
        • Liu X.
        • Charron C.S.
        • et al.
        Broccoli consumption affects the human gastrointestinal microbiota.
        J Nutr Biochem. 2019; 63: 27-34
        • Holscher H.D.
        • Guetterman H.M.
        • Swanson K.S.
        • et al.
        Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial.
        J Nutr. 2018; 148: 861-867
        • Englyst H.N.
        • Hay S.
        • Macfarlane G.T.
        Polysaccharide breakdown by mixed populations of human faecal bacteria.
        FEMS Microbiol Ecol. 1987; 3: 163-171
        • Cummings J.H.
        • Macfarlane G.T.
        The control and consequences of bacterial fermentation in the human colon.
        J Appl Bacteriol. 1991; 70: 443-459
        • El Kaoutari A.
        • Armougom F.
        • Gordon J.I.
        • Raoult D.
        • Henrissat B.
        The abundance and variety of carbohydrate-active enzymes in the human gut microbiota.
        Nat Rev Microbiol. 2013; 11: 497-504
      1. United States Food and Drug Administration. Food Labeling: Revision of the Nutrition and Supplement Facts Labels (21 CFR Part 101). Washington, DC: Food and Drug Administration, Health and Human Services; 2016:33742-33999.

      2. United States Food and Drug Administration. The Declaration of Certain Isolated or Synthetic Non-Digestible Carbohydrates as Dietary Fiber on Nutrition and Supplement Fact Labels; Guidance for Industry; Availability. Washington, DC: Food and Drug Administration, Health and Human Services; 2018:1-8.

        • Thompson S.V.
        • Hannon B.A.
        • An R.
        • Holscher H.D.
        Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2017; 106: 1514-1528
        • Howarth N.C.
        • Saltzman E.
        • Roberts S.B.
        Dietary fiber and weight regulation.
        Nutr Rev. 2009; 59: 129-139
        • Wanders A.J.
        • van den Borne J.J.G.C.
        • de Graaf C.
        • et al.
        Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials.
        Obes Rev. 2011; 12: 724-739
        • do Carmo M.M.R.
        • Walker J.C.L.
        • Novello D.
        • et al.
        Polydextrose: Physiological function, and effects on health.
        Nutrients. 2016; 8: 1-13
        • Whisner C.M.
        • Castillo L.F.
        Prebiotics, bone and mineral metabolism.
        Calcif Tissue Int. 2018; 102: 443-479
        • McRorie Jr., J.W.
        Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: What to look for and how to recommend an effective fiber therapy.
        Nutr Today. 2015; 50: 82-89
        • McRorie Jr., J.W.
        Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: What to look for and how to recommend an effective fiber therapy.
        Nutr Today. 2015; 50: 90-97
        • Khan K.
        • Jovanovski E.
        • Ho H.V.T.
        • et al.
        The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials.
        Nutr Metab Cardiovasc Dis. 2018; 28: 3-13
        • Holscher H.D.
        • Caporaso J.G.
        • Hooda S.
        • et al.
        Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: Follow-up of a randomized controlled trial.
        Am J Clin Nutr. 2015; 101: 55-64
        • Holscher H.D.
        • Bauer L.L.
        • Vishnupriya G.
        • et al.
        Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial.
        J Nutr. 2015; 145: 2025-2032
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • et al.
        Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 491-502
        • Kellow N.J.
        • Coughlan M.T.
        • Reid C.M.
        Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials.
        Br J Nutr. 2014; 111: 1147-1161
        • Beserra B.T.S.
        • Fernandes R.
        • do Rosario V.A.
        • Mocellin M.C.
        • Kuntz M.G.F.
        • Trindade E.B.S.M.
        A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity.
        Clin Nutr. 2015; 34: 845-858
        • Mcloughlin R.F.
        • Berthon B.S.
        • Jensen M.E.
        • Baines K.J.
        • Wood L.G.
        Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis.
        Am J Clin Nutr. 2017; : 930-945
        • Marco M.L.
        • Heeney D.
        • Binda S.
        • et al.
        Health benefits of fermented foods: Microbiota and beyond.
        Curr Opin Biotechnol. 2017; 44: 94-102
        • Reid G.
        • Gadir A.A.
        • Dhir R.
        Probiotics: Reiterating what they are and what they are not.
        Front Microbiol. 2019; 10: 1-6
        • Hill C.
        • Guarner F.
        • Reid G.
        • et al.
        Expert consensus document: The international Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.
        Nat Rev Gastroenterol Hepatol. 2014; 11: 506-514
        • McFarland L.V.
        Systematic review and meta-analysis of Saccharomyces boulardii in adult patients.
        World J Gastroenterol. 2010; 16: 2202-2222
        • Holscher H.D.
        • Czerkies L.A.
        • Cekola P.
        • et al.
        Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: A randomized, double-blind, controlled trial.
        JPEN J Parenter Enteral Nutr. 2012; 36: 106S-117S
        • Christensen H.R.
        • Larsen C.N.
        • et al.
        Immunomodulating potential of supplementation with probiotics: A dose response study in healthy young adults.
        FEMS Immunol Med Microbiol. 2006; 47: 380-390
        • Walker A.W.
        • Ince J.
        • Duncan S.H.
        • et al.
        Dominant and diet-responsive groups of bacteria within the human colonic microbiota.
        ISME J. 2010; 5: 220-230
        • Depommier C.
        • Everard A.
        • Druart C.
        • et al.
        Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study.
        Nat Med. 2019; 25: 1096-1103
        • Dionne J.
        • Ford A.C.
        • Yuan Y.
        • et al.
        A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low FODMAPs diet in treating symptoms of irritable bowel syndrome.
        Am J Gastroenterol. 2018; 113: 1290-1300

      Biography

      H. D. Holscher is assistant professor of nutrition, Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL.