Research Review| Volume 120, ISSUE 2, P230-244, February 2020

Download started.


Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review

Published:January 22, 2020DOI:


      Resistant starch (RS; types 1 to 5) cannot be digested in the small intestine and thus enters the colon intact, with some types capable of being fermented by gut microbes. As a fiber, types 1, 2, 3, and 5 are found naturally in foods, while types 2, 3, and 4 can be added to foods as a functional ingredient. This narrative review identifies RS content in whole foods commonly consumed in the United States. Scientific databases (n=3) were searched by two independent researchers. Ninety-four peer-reviewed articles published between 1982 and September 2018 were selected in which the RS was quantified and the food preparation method before analysis was suitable for consumption. The RS from each food item was adjusted for moisture if the RS value was provided as percent dry weight. Each food item was entered into a database according to food category, where the weighted mean±weighted standard deviation was calculated. The range of RS values and overall sample size for each food category were identified. Breads, breakfast cereals, snack foods, bananas and plantains, grains, pasta, rice, legumes, and potatoes contain RS. Foods that have been cooked then chilled have higher RS than cooked foods. Foods with higher amylose concentrations have higher RS than native varieties. The data from this database will serve as a resource for health practitioners to educate and support patients and clients interested in increasing their intake of RS-rich foods and for researchers to formulate dietary interventions with RS foods and examine associated health outcomes.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Dahl W.J.
        • Stewart M.L.
        Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber.
        J Acad Nutr Diet. 2015; 115: 1861-1870
        • Grooms K.N.
        • Ommerborn M.J.
        • Pham D.Q.
        • Djousse L.
        • Clark C.R.
        Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010.
        Am J Med. 2013; 126 (e1051-1054): 1059-1067
        • Institute of Medicine
        Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids.
        National Academies Press, Washington, DC2005
        • Birt D.F.
        • Boylston T.
        • Hendrich S.
        • et al.
        Resistant starch: Promise for improving human health.
        Adv Nutr. 2013; 4: 587-601
        • Chiu Y.T.
        • Stewart M.L.
        Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans.
        Asia Pac J Clin Nutr. 2013; 22: 372-379
        • Westenbrink S.
        • Brunt K.
        • van der Kamp J.W.
        Dietary fibre: Challenges in production and use of food composition data.
        Food Chem. 2013; 140: 562-567
        • Englyst H.
        • Wiggins H.S.
        • Cummings J.H.
        Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates.
        Analyst. 1982; 107: 307-318
        • Englyst H.N.
        • Cummings J.H.
        Digestion of the polysaccharides of some cereal foods in the human small intestine.
        Am J Clin Nutr. 1985; 42: 778-787
        • Perera A.
        • Meda V.
        • Tyler R.T.
        Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods.
        Food Res Int. 2010; 43: 1959-1974
        • Englyst H.N.
        • Kingman S.M.
        • Cummings J.H.
        Classification and measurement of nutritionally important starch fractions.
        Eur J Clin Nutr. 1992; 46: S33-S50
        • Berry C.S.
        Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre.
        J Cereal Sci. 1986; 4: 301-314
        • Goñi I.
        • García-Diz L.
        • Mañas E.
        • Saura-Calixto F.
        Analysis of resistant starch: A method for foods and food products.
        Food Chem. 1996; 56: 445-449
        • Muir J.G.
        • O'Dea K.
        Measurement of resistant starch: Factors affecting the amount of starch escaping digestion in vitro.
        Am J Clin Nutr. 1992; 56: 123-127
        • Akerberg A.K.
        • Liljeberg H.G.
        • Granfeldt Y.E.
        • Drews A.W.
        • Bj-orck I.M.
        An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber.
        J Nutr. 1998; 128: 651-660
        • McCleary B.V.
        • Monaghan D.A.
        Measurement of resistant starch.
        J AOAC Int. 2002; 85: 665-675
        • Megazyme
        Resistant starch assay kit.
        (Published 2019. Accessed June 16, 2019)
        • Shen D.
        • Bai H.
        • Li Z.
        • Yu Y.
        • Zhang H.
        • Chen L.
        Positive effects of resistant starch supplementation on bowel function in healthy adults: A systematic review and meta-analysis of randomized controlled trials.
        Int J Food Sci Nutr. 2017; 68: 149-157
        • Grabitske H.A.
        • Slavin J.L.
        Low-digestible carbohydrates in practice.
        J Am Diet Assoc. 2008; 108: 1677-1681
        • Purwani E.Y.
        • Purwadaria T.
        • Suhartono M.T.
        Fermentation RS3 derived from sago and rice starch with Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629.
        Anaerobe. 2012; 18: 55-61
        • Zaman S.A.
        • Sarbini S.R.
        The potential of resistant starch as a prebiotic.
        Crit Rev Biotechnol. 2016; 36: 578-584
        • Martinez I.
        • Kim J.
        • Duffy P.R.
        • Schlegel V.L.
        • Walter J.
        Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects.
        PLoS One. 2010; 5e15046
        • Alfa M.J.
        • Strang D.
        • Tappia P.S.
        • et al.
        A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults.
        Clin Nutr. 2018; 37: 797-807
        • Maier T.V.
        • Lucio M.
        • Lee L.H.
        • et al.
        Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome.
        MBio. 2017; 8
        • Willis H.J.
        • Eldridge A.L.
        • Beiseigel J.
        • Thomas W.
        • Slavin J.L.
        Greater satiety response with resistant starch and corn bran in human subjects.
        Nutr Res. 2009; 29: 100-105
        • Ble-Castillo J.L.
        • Juarez-Rojop I.E.
        • Tovilla-Zarate C.A.
        • et al.
        Acute consumption of resistant starch reduces food intake but has no effect on appetite ratings in healthy subjects.
        Nutrients. 2017; 9
        • Maziarz M.P.
        • Preisendanz S.
        • Juma S.
        • Imrhan V.
        • Prasad C.
        • Vijayagopal P.
        Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: A randomized-controlled trial.
        Nutr J. 2017; 16: 14
        • Zenel A.M.
        • Stewart M.L.
        High amylose white rice reduces post-prandial glycemic response but not appetite in humans.
        Nutrients. 2015; 7: 5362-5374
        • Johnston K.L.
        • Thomas E.L.
        • Bell J.D.
        • Frost G.S.
        • Robertson M.D.
        Resistant starch improves insulin sensitivity in metabolic syndrome.
        Diabet Med. 2010; 27: 391-397
        • Maki K.C.
        • Pelkman C.L.
        • Finocchiaro E.T.
        • et al.
        Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men.
        J Nutr. 2012; 142: 717-723
        • Robertson M.D.
        • Bickerton A.S.
        • Dennis A.L.
        • Vidal H.
        • Frayn K.N.
        Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism.
        Am J Clin Nutr. 2005; 82: 559-567
        • Peterson C.M.
        • Beyl R.A.
        • Marlatt K.L.
        • et al.
        Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: A randomized controlled trial.
        Am J Clin Nutr. 2018;
        • Wutzke K.D.
        • Schmidek K.V.
        The effect of resistant starches on fat oxidation in healthy adults as measured by a (13)CO2-breath test.
        Isotopes Environ Health Stud. 2017; 53: 553-562
        • Yuan H.C.
        • Meng Y.
        • Bai H.
        • Shen D.Q.
        • Wan B.C.
        • Chen L.Y.
        Meta-analysis indicates that resistant starch lowers serum total cholesterol and low-density cholesterol.
        Nutr Res. 2018; 54: 1-11
        • Lockyer S.
        • Nugent A.P.
        Health effects of resistant starch.
        Nutr Bull. 2017; 42: 10-41
        • Bergeron N.
        • Williams P.T.
        • Lamendella R.
        • et al.
        Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk.
        Br J Nutr. 2016; 116: 2020-2029
        • Stewart M.L.
        • Zimmer J.P.
        A high fiber cookie made with resistant starch type 4 reduces post-prandial glucose and insulin responses in healthy adults.
        Nutrients. 2017; 9
        • Gower B.A.
        • Bergman R.
        • Stefanovski D.
        • et al.
        Baseline insulin sensitivity affects response to high-amylose maize resistant starch in women: A randomized, controlled trial.
        Nutr Metab (Lond). 2016; 13: 2
        • O'Keefe S.J.
        • Chung D.
        • Mahmoud N.
        • et al.
        Why do African Americans get more colon cancer than Native Africans?.
        J Nutr. 2007; 137: 175S-182S
        • Murphy M.M.
        • Douglass J.S.
        • Birkett A.
        Resistant starch intakes in the United States.
        J Am Diet Assoc. 2008; 108: 67-78
        • US Department of Agriculture ARS
        FoodData Central.
        (Published 2019. Accessed October 1, 2019)
        • Carcea M.
        • Salvatorelli S.
        • Turfani V.
        Measurement of resistant starch in cooked cereal-based foods.
        Qual Assur Saf Crop. 2009; 1: 240-245
        • Odenigbo A.M.
        • Asumugha V.U.
        • Ubbor S.
        • Ngadi M.
        In vitro starch digestibility of plantain and cooking-banana at ripe and unripe stages.
        Int Food Res J. 2013; 20: 3027-3031
        • Lintas C.
        • Cappelloni M.
        • Adorisio S.
        • Clementi A.
        • Del Toma E.
        Effect of ripening on resistant starch and total sugars in Musa paradisiaca sapientum: Glycaemic and insulinaemic responses in normal subjects and NIDDM patients.
        Eur J Clin Nutr. 1995; 49: S303-S306
        • Englyst H.N.
        • Cummings J.H.
        Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine.
        Am J Clin Nutr. 1986; 44: 42-50
        • Platel K.
        • Shurpalekar K.S.
        Resistant starch content of Indian foods.
        Plant Food Hum Nutr. 1994; 45: 91-95
        • Oladele E.O.
        • Williamson G.
        Impact of resistant starch in three plantain (Musa AAB) products on glycaemic response of healthy volunteers.
        Eur J Nutr. 2016; 55: 75-81
        • Gelroth J.A.
        • Ranhotra G.S.
        • Gelroth J.A.
        • Ranhotra G.S.
        Determination of resistant starch in selected grain-based foods.
        J AOAC Int. 2000; 83: 988-991
        • Djurle S.
        • Andersson A.A.M.
        • Andersson R.
        Effects of baking on dietary fibre, with emphasis on β-glucan and resistant starch, in barley breads.
        J Cereal Sci. 2018; 79: 449-455
        • Englyst K.N.
        • Vinoy S.
        • Englyst H.N.
        • Lang V.
        Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose.
        Br J Nutr. 2003; 89: 329-340
        • Englyst H.N.
        • Veenstra J.
        • Hudson G.J.
        Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response.
        Br J Nutr. 1996; 75: 327-337
        • Abdel-Aal E.-S.M.
        • Rabalski I.
        Effect of baking on nutritional properties of starch in organic spelt whole grain products.
        Food Chem. 2008; 111: 150-156
        • Saura-Calixto F.
        • Garcia-Alonso A.
        • Goni I.
        • Bravo L.
        In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis.
        J Agric Food Chem. 2000; 48: 3342-3347
        • Food Standards Agency
        Nutrient Analysis of Bread and Morning Goods. Project Number AN1062: Analytical Report.
        Ministry of Agriculture Fischeries and Food, Department of Health and the Scottish Executive, London, UK2001
        • Muir J.G.
        • Yeow E.G.
        • Keogh J.
        • et al.
        Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone.
        Am J Clin Nutr. 2004; 79: 1020-1028
        • Giuberti G.
        • Fortunati P.
        • Gallo A.
        Can different types of resistant starch influence the in vitro starch digestion of gluten free breads?.
        J Cereal Sci. 2016; 70: 253-255
        • De La Hera E.
        • Rosell C.M.
        • Gomez M.
        Effect of water content and flour particle size on gluten-free bread quality and digestibility.
        Food Chem. 2014; 151: 526-531
        • Buddrick O.
        • Jones O.A.H.
        • Hughes J.G.
        • Kong I.
        • Small D.M.
        The effect of fermentation and addition of vegetable oil on resistant starch formation in wholegrain breads.
        Food Chem. 2015; 180: 181-185
        • Collar C.
        • Jimenez T.
        • Conte P.
        • Fadda C.
        Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads.
        Carbohydr Polym. 2014; 113: 149-158
        • Ragaee S.
        • Guzar I.
        • Dhull N.
        • Seetharaman K.
        Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread.
        LWT Food Sci Technol. 2011; 44: 2147-2153
        • Giacco R.
        • Brighenti F.
        • Parillo M.
        • et al.
        Characteristics of some wheat-based foods of the Italian diet in relation to their influence on postprandial glucose metabolism in patients with type 2 diabetes.
        Br J Nutr. 2001; 85: 33-40
        • Amaral O.
        • Guerreiro C.S.
        • Gomes A.
        • Cravo M.
        Resistant starch production in wheat bread: Effect of ingredients, baking conditions and storage.
        Eur Food Res Technol. 2016; 242: 1747-1753
        • Rizzello C.G.
        • Calasso M.
        • Campanella D.
        • De Angelis M.
        • Gobbetti M.
        Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread.
        Int J Food Microbiol. 2014; 180: 78-87
        • Rohlfing K.A.
        • Paez A.
        • Kim H.J.
        • White P.J.
        Effects of resistant starch and fiber from high-amylose non-floury corn on tortilla texture.
        Cereal Chem. 2010; 87: 581-585
        • Bello-Perez L.A.
        • Flores-Silva P.C.
        • Agama-Acevedo E.
        • de Dios Figueroa-Cardenas J.
        • Lopez-Valenzuela J.A.
        • Campanella O.H.
        Effect of the nixtamalization with calcium carbonate on the indigestible carbohydrate content and starch digestibility of corn tortilla.
        J Cereal Sci. 2014; 60: 421-425
        • Osorio-Díaz P.
        • Agama-Acevedo E.
        • Bello-Pérez L.A.
        • Islas-Hernández J.J.
        • Gomez-Montiel N.O.
        • Paredes-López O.
        Effect of endosperm type on texture and in vitro starch digestibility of maize tortillas.
        LWT Food Sci Technol. 2011; 44: 611-615
        • Agama-Acevedo E.
        • Rendon-Villalobos R.
        • Tovar J.
        • Paredes-Lopez O.
        • Islas-Hernandez J.J.
        • Bello-Perez L.A.
        In vitro starch digestibility changes during storage of maize flour tortillas.
        Die Nahrung. 2004; 48: 38-42
        • Islas-Hernández J.J.
        • Rendón-Villalobos R.
        • Agama-Acevedo E.
        • et al.
        In vitro digestion rate and resistant starch content of tortillas stored at two different temperatures.
        LWT Food Sci Technol. 2006; 39: 947-951
        • Rendon R.
        • Arturo Bello-Pérez L.
        • Osorio-Díaz P.
        • Tovar J.
        • Paredes-Lopez O.
        Effect of storage time on in vitro digestibility and resistant starch content of nixtamal, masa, and tortilla.
        J Agric Food Chem. 2005; 53: 1281-1285
        • Sayago-Ayerdi S.G.
        • Tovar J.
        • Osorio-Diaz P.
        • Paredes-Lopez O.
        • Bello-Perez L.A.
        In vitro starch digestibility and predicted glycemic index of corn tortilla, black beans, and tortilla-bean mixture: Effect of cold storage.
        J Agric Food Chem. 2005; 53: 1281-1285
        • Gutiérrez-Dorado R.
        • Ayala-Rodríguez A.E.
        • Milán-Carrillo J.
        • et al.
        Technological and nutritional properties of flours and tortillas from nixtamalized and extruded quality protein maize (Zea mays L.).
        Cereal Chem. 2008; 85: 808-816
        • Santiago-Ramos D.
        • De Dios Figueroa-Cárdenas J.
        • Véles-Medina J.J.
        • et al.
        Resistant starch formation in tortillas from an ecological nixtamalization process.
        Cereal Chem. 2015; 92: 185-192
        • Angioloni A.
        • Collar C.
        Physicochemical and nutritional properties of reduced-caloric density high-fibre breads.
        LWT Food Sci Technol. 2011; 44: 747-758
        • Skrabanja V.
        • Liljeberg H.G.
        • Hedley C.L.
        • Kreft I.
        • Bjorck I.M.
        Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in peas (Pisum sativum L.).
        J Agric Food Chem. 1999; 47: 2033-2039
        • Englyst K.N.
        • Englyst H.N.
        • Hudson G.J.
        • Cole T.J.
        • Cummings J.H.
        Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response.
        Am J Clin Nutr. 1999; 69: 448-454
        • Marlatt K.L.
        • White U.A.
        • Beyl R.A.
        • et al.
        Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial.
        Contemp Clin Trials. 2018; 65: 99-108
        • Rosin P.M.
        • Lajolo F.M.
        • Menezes E.W.
        Measurement and characterization of dietary starches.
        J Food Comp Anal. 2002; 15: 367-377
        • Hallstrom E.
        • Sestili F.
        • Lafiandra D.
        • Bjorck I.
        • Ostman E.
        A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects.
        Food Nutr Res. 2011; 55
        • Hoebler C.
        • Karinthi A.
        • Chiron H.
        • Champ M.
        • Barry J.L.
        Bioavailability of starch in bread rich in amylose: Metabolic responses in healthy subjects and starch structure.
        Eur J Clin Nutr. 1999; 53: 360-366
        • Dodevska M.S.
        • Djordjevic B.I.
        • Sobajic S.S.
        • Miletic I.D.
        • Djordjevic P.B.
        • Dimitrijevic-Sreckovic V.S.
        Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.
        Food Chem. 2013; 141: 1624-1629
        • Yadav B.S.
        Effect of frying, baking and storage conditions on resistant starch content of foods.
        Br Food J. 2011; 113: 710-719
        • Liljeberg Elmstahl H.
        Resistant starch content in a selection of starchy foods on the Swedish market.
        Eur J Clin Nutr. 2002; 56: 500-505
        • Bednar G.E.
        • Patil A.R.
        • Murray S.M.
        • Grieshop C.M.
        • Merchen N.R.
        • Fahey Jr., G.C.
        Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
        J Nutr. 2001; 131: 276-286
        • Olesen M.
        • Rumessen J.J.
        • Gudmand-Hoyer E.
        The hydrogen breath test in resistant starch research.
        Eur J Clin Nutr. 1992; 46: S133-S134
        • Muir J.G.
        • O'Dea K.
        Validation of an in vitro assay for predicting the amount of starch that escapes digestion in the small intestine of humans.
        Am J Clin Nutr. 1993; 57: 540-546
        • Marlett J.A.
        • Longacre M.J.
        Comparison of in vitro and in vivo measures of resistant starch in selected grain products.
        Cereal Chem. 1996; 73: 63-68
        • Emami S.
        • Meda V.
        • Pickard M.D.
        • Tyler R.T.
        Impact of micronization on rapidly digestible, slowly digestible, and resistant starch concentrations in normal, high-amylose, and waxy barley.
        J Agric Food Chem. 2010; 58: 9793-9799
        • Mariscal-Moreno R.M.
        • de Dios Figueroa Cárdenas J.
        • Santiago-Ramos D.
        • Rayas-Duarte P.
        • Veles-Medina J.J.
        • Martínez-Flores H.E.
        Nixtamalization process affects resistant starch formation and glycemic index of tamales.
        J Food Sci. 2017; 82: 1110-1115
        • Skrabanja V.
        • Liljeberg Elmstahl H.G.
        • Kreft I.
        • Bjorck I.M.
        Nutritional properties of starch in buckwheat products: Studies in vitro and in vivo.
        J Agric Food Chem. 2001; 49: 490-496
        • Lu L.
        • Murphy K.
        • Baik B.-K.
        Genotypic variation in nutritional composition of buckwheat groats and husks.
        Cereal Chem. 2013; 90: 132-137
        • Fabbri A.D.T.
        • Schacht R.W.
        • Crosby G.A.
        Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas.
        NFS J. 2016; 3: 8-12
        • Osorio-Díaz P.
        • Bello-Pérez L.A.
        • Sáyago-Ayerdi S.G.
        • Benítez-Reyes MdP.
        • Tovar J.
        • Paredes-López O.
        Effect of processing and storage time on in vitro digestibility and resistant starch content of two bean (Phaseolus vulgaris L) varieties.
        J Sci Food Agric. 2003; 83: 1283-1288
        • Pujolà M.
        • Farreras A.
        • Casañas F.
        Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.).
        Food Chem. 2007; 102: 1034-1041
        • Wang N.
        • Hatcher D.W.
        • Tyler R.T.
        • Toews R.
        • Gawalko E.J.
        Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.).
        Food Res Int. 2010; 43: 589-594
        • Aguilera Y.
        • Esteban R.M.
        • Benitez V.
        • Molla E.
        • Martin-Cabrejas M.A.
        Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing.
        J Agric Food Chem. 2009; 57: 10682-10688
        • Brummer Y.
        • Kaviani M.
        • Tosh S.M.
        Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas.
        Food Res Int. 2015; 67: 117-125
        • Hawkins A.
        • Johnson S.K.
        In vitro carbohydrate digestibility of whole-chickpea and chickpea bread products.
        Int J Food Sci Nutr. 2005; 56: 147-155
        • Marconi E.
        • Ruggeri S.
        • Cappelloni M.
        • Leonardi D.
        • Carnovale E.
        Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking.
        J Agric Food Chem. 2000; 48: 5986-5994
        • De Almeida Costa G.E.
        • Da Silva Queiroz-Monici K.
        • Pissini Machado Reis S.M.
        • De Oliveira A.C.
        Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes.
        Food Chem. 2006; 94: 327-330
        • Veena A.
        • Urooj A.
        • Puttaraj S.
        Effect of processing on the composition of dietary fibre and starch in some legumes.
        Die Nahrung. 1995; 39: 132-138
        • Eyaru R.
        • Shrestha A.K.
        • Arcot J.
        Effect of various processing techniques on digestibility of starch in red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum).
        Food Res Int. 2009; 42: 956-962
        • Araya H.
        • Pak N.
        • Vera G.
        • Alvina M.
        Digestion rate of legume carbohydrates and glycemic index of legume-based meals.
        Int J Food Sci Nutr. 2003; 54: 119-126
        • Johnson C.R.
        • Thavarajah D.
        • Thavarajah P.
        • Payne S.
        • Moore J.
        • Ohm J.B.
        Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus).
        J Food Comp Anal. 2015; 38: 106-111
        • Piecyk M.
        • Wolosiak R.
        • Druzynska B.
        • Worobiej E.
        Chemical composition and starch digestibility in flours from Polish processed legume seeds.
        Food Chem. 2012; 135: 1057-1064
        • Wang N.
        • Hatcher D.W.
        • Toews R.
        • Gawalko E.J.
        Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris).
        LWT Food Sci Technol. 2009; 42: 842-848
        • Nigudkar M.R.
        • Madan J.G.
        Resistant starch content of traditional Indian legume preparations.
        Curr Res Nutr Food Sci. 2017; 5
        • Kaur M.
        • Sandhu K.S.
        • Ahlawat R.
        • Sharma S.
        In vitro starch digestibility, pasting and textural properties of mung bean: Effect of different processing methods.
        J Food Sci Technol. 2015; 52: 1642-1648
        • Landa-Habana L.
        • Pina-Hernandez A.
        • Agama-Acevedo E.
        • Tovar J.
        • Bello-Perez L.A.
        Effect of cooking procedures and storage on starch bioavailability in common beans (Phaseolus vulgaris L.).
        Plant Foods Hum Nutr. 2004; 59: 133-136
        • Noah L.
        • Guillon F.
        • Bouchet B.
        • et al.
        Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans.
        J Nutr. 1998; 128: 977-985
        • Siva N.
        • Thavarajah P.
        • Thavarajah D.
        The impact of processing and cooking on prebiotic carbohydrates in lentil.
        J Food Comp Anal. 2018; 70: 72-77
        • Aravind N.
        • Sissons M.
        • Fellows C.M.
        • Blazek J.
        • Gilbert E.P.
        Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics.
        Food Chem. 2013; 136: 1100-1109
        • Bello-Perez L.A.
        • Flores-Silva P.C.
        • Camelo-Mendez G.A.
        • Paredes-Lopez O.
        • Figueroa-Cardenas J.D.
        Effect of the nixtamalization process on the dietary fiber content, starch digestibility, and antioxidant capacity of blue maize tortilla.
        Cereal Chem. 2015; 92: 265-270
        • Khan I.
        • Yousif A.
        • Johnson S.K.
        • Gamlath S.
        Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta.
        Food Res Int. 2013; 54: 578-586
        • Kalkan F.
        • Vanga S.K.
        • Gariepy Y.
        • Raghavan V.
        Effect of MW-assisted roasting on nutritional and chemical properties of hazelnuts.
        Food Nutr Res. 2015; 59: 28916
        • Garcia-Alonso A.
        • Goni I.
        Effect of processing on potato starch: In vitro availability and glycaemic index.
        Die Nahrung. 2000; 44: 19-22
        • Kingman S.M.
        • Englyst H.N.
        The influence of food preparation methods on the in-vitro digestibility of starch in potatoes.
        Food Chem. 1994; 49: 181-186
        • Leeman M.
        • Ostman E.
        • Bjorck I.
        Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects.
        Eur J Clin Nutr. 2005; 59: 1266-1271
        • Englyst H.N.
        • Cummings J.H.
        Digestion of polysaccharides of potato in the small intestine of man.
        Am J Clin Nutr. 1987; 45: 423-431
        • Zhao X.
        • Andersson M.
        • Andersson R.
        Resistant starch and other dietary fiber components in tubers from a high-amylose potato.
        Food Chem. 2018; 251: 58-63
        • Monro J.
        • Mishra S.
        • Blandford E.
        • Anderson J.
        • Genet R.
        Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool.
        J Food Comp Anal. 2009; 22: 539-545
        • Larder C.E.
        • Abergel M.
        • Kubow S.
        • Donnelly D.J.
        Freeze-drying affects the starch digestibility of cooked potato tubers.
        Food Res Int. 2018; 103: 208-214
        • Raatz S.K.
        • Idso L.
        • Johnson L.K.
        • Jackson M.I.
        • Combs G.F.
        Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety.
        Food Chem. 2016; 208: 297-300
        • de Vasconcelos N.C.M.
        • Salgado S.M.
        • Livera A.V.S.
        • de Andrade S.A.C.
        • de Oliveira M.G.
        • Stamford T.L.M.
        Influence of heat treatment on the sensory and physical characteristics and carbohydrate fractions of french-fried potatoes (Solanum tuberosum L.).
        Food Sci Technol. 2015; 35: 561-569
        • Ortuno J.
        • Ros G.
        • Periago M.J.
        • Martinez C.
        • Lopez G.
        Cooking water uptake and starch digestible value of selected spanish rices.
        J Food Qual. 1996; 19: 79-89
        • Reed M.O.
        • Ai Y.
        • Leutcher J.L.
        • Jane J.L.
        Effects of cooking methods and starch structures on starch hydrolysis rates of rice.
        J Food Sci. 2013; 78: H1076-H1081
        • Sonia S.
        • Witjaksono F.
        • Ridwan R.
        Effect of cooling of cooked white rice on resistant starch content and glycemic response.
        Asia Pac J Clin Nutr. 2015; 24: 620-625
        • Chen M.H.
        • Bergman C.J.
        • McClung A.M.
        • Everette J.D.
        • Tabien R.E.
        Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods.
        Food Chem. 2017; 234: 180-189
        • Sagum R.
        • Arcot J.
        Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose.
        Food Chem. 2000; 70: 107-111
        • Maziarz M.P.
        Role of fructans and resistant starch in diabetes care.
        Diabetes Spectrum. 2013; 26: 35-39
        • Robertson M.D.
        • Wright J.W.
        • Loizon E.
        • et al.
        Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome.
        J Clin Endocrinol Metab. 2012; 97: 3326-3332
        • Venkataraman A.
        • Sieber J.R.
        • Schmidt A.W.
        • Waldron C.
        • Theis K.R.
        • Schmidt T.M.
        Variable responses of human microbiomes to dietary supplementation with resistant starch.
        Microbiome. 2016; 4: 33
        • McCleary B.V.
        • Sloane N.
        • Draga A.
        Determination of total dietary fibre and available carbohydrates: A rapid integrated procedure that simulates in vivo digestion.
        Starch Stärke. 2015; 67: 860-883
        • Maziarz M.
        • Sherrard M.
        • Juma S.
        • Prasad C.
        • Imrhan V.
        • Vijayagopal P.
        Sensory characteristics of high-amylose maize-resistant starch in three food products.
        Food Sci Nutr. 2013; 1: 117-124
        • Baixauli R.
        • Salvador A.
        • Martinez-Cervera S.
        • Fiszman S.
        Distinctive sensory features introduced by resistant starch in baked products.
        LWT Food Sci Technol. 2008; 41: 1927-1933
        • Laguna L.
        • Varela P.
        • Salvador A.
        • Sanz T.
        • Fiszman S.M.
        Balancing texture and other sensory features in reduced fat short-dough biscuits.
        J Text Stud. 2012; 43: 235-245
        • Fuentes-Zaragoza E.
        • Riquelme-Navarrete M.
        • Sánchez-Zapata E.
        • Pérez-Álvarez J.
        Resistant starch as functional ingredient: A review.
        Food Res Int. 2010; 43: 931-942
        • Parada J.
        • Aguilera J.M.
        In vitro digestibility and glycemic response of potato starch is related to granule size and degree of gelatinization.
        J Food Sci. 2009; 74: E34-E38
      1. Scientific opinion on the substantiation of health claims related to resistant starch and reduction of post-prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to Article 13(1) of Regulation (EC) No 1924/2006.
        EFSA J. 2011; 9: 2024
        • Food and Drug Administration, Department of Health and Human Services
        High-Amylose Starch and Diabetes.
        (Docket Number FDA-2015-Q-2352) Food and Drug Administration, College Park, MD2015
        • Bodinham C.L.
        • Frost G.S.
        • Robertson M.D.
        Acute ingestion of resistant starch reduces food intake in healthy adults.
        Br J Nutr. 2010; 103: 917-922
        • Dainty S.A.
        • Klingel S.L.
        • Pilkey S.E.
        • et al.
        Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 diabetes.
        J Nutr. 2016; 146: 2252-2259
        • Shi J.
        • Sun Z.
        • Shi Y.C.
        Improved in vitro assay of resistant starch in cross-linked phosphorylated starch.
        Carbohydr Polym. 2019; 210: 210-214


      M. A. Patterson is an assistant professor, Department of Nutrition and Food Sciences, Texas Woman’s University, Houston.


      M. Maiya is a research coordinator for the Office of Research and Sponsored Programs, Department of Nutrition and Food Sciences, Texas Woman’s University, Houston.


      M. L. Stewart is global research and development technical director of plant-based proteins, Ingredion Incorporated, Bridgewater, NJ.