Advertisement

The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review

Published:November 29, 2019DOI:https://doi.org/10.1016/j.jand.2019.09.017

      Abstract

      Dietary intake is a key determinant of gastrointestinal microbiota composition. Studies have considered the relationship between gut microbiota and dietary patterns. It is likely that certain plant foods that contain fiber and other bioactive matter may be more likely to drive microbial changes than others; however, study design and other factors can make interpretation of the literature difficult. Fifteen well-controlled, well-defined diet interventions published between 2008 and 2018 using whole, plant foods were evaluated for their influence on gut microbiota. There was limited effect on microbial diversity across studies and modest microbial changes were noted in 10 of 15 studies. More research is needed before specific plant foods can be recommended to improve gut microbiota and ultimately health. Methodologic considerations for future diet and microbiome studies are discussed. Additional research to better understand how specific whole, plant foods influence microbe composition, functionality, and metabolite production is needed, as are mechanistic studies linking diet-induced gut microbe changes to health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • US Departments of Health and Human Services and Agriculture
        2015-2020 Dietary Guidelines for Americans.
        8th edition. US Department of Agriculture, Washington, DC2015
        • Slavin J.L.
        • Lloyd B.
        Health benefits of fruits and vegetables.
        Adv Nutr. 2012; 3: 506-516
        • Slavin J.
        Fiber and prebiotics: Mechanisms and health benefits.
        Nutrients. 2013; 5: 1417-1435
        • Cani P.D.
        Human gut microbiome: Hopes, threats and promises.
        Gut. 2018; 67: 1716-1725
        • Dai F.-J.
        • Chau C.-F.
        Classification and regulatory perspectives of dietary fiber.
        J Food Drug Anal. 2017; 25: 37-42
        • Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes
        Dietary Reference Intakes Proposed Definition of Dietary Fiber.
        National Academies Press, Wahington, DC2001
        • Food and Drug Administration
        Scientific Evaluation of the Evidence on the Beneficial Physiological Effects of Isolated or Synthetic Non-Digestible Carbohydrates Submitted as a Citizen Petition (21 CFR 10.30).
        • Institute of Medicine, Food and Nutrition Board
        Dietary, Functional, and Total Fiber in Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids.
        National Academies Press, Washington, DC2005: 339-400
        • Hoy M.K. G.J.
        Fiber intake of the U.S. population: What We Eat in America, NHANES 2009- 2010.
        Food Surveys Research Group, Wahington, DC2014 (Dietary Data Brief no. 12)
        • Reynolds A.
        • Mann J.
        • Cummings J.
        • Winter N.
        • Mete E.
        • Te Morenga L.
        Carbohydrate quality and human health: A series of systematic reviews and meta-analyses.
        Lancet. 2019; 393: 434-445
        • Gentile C.L.
        • Weir T.L.
        The gut microbiota at the intersection of diet and human health.
        Science. 2018; 362: 776-780
        • Lozupone C.A.
        • Knight R.
        Species divergence and the measurement of microbial diversity.
        FEMS Microbiol Rev. 2008; 32: 557-578
        • Song S.J.
        • Lauber C.
        • Costello E.K.
        • et al.
        Cohabiting family members share microbiota with one another and with their dogs.
        Elife. 2013; 2: e00458
        • Donovan S.M.
        Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.
        Gut Microbes. 2017; 8: 75-81
        • Shortt C.
        • Hasselwander O.
        • Meynier A.
        • et al.
        Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
        Eur J Nutr. 2018; 57: 25-49
        • Makki K.
        • Deehan E.C.
        • Walter J.
        • Bäckhed F.
        The impact of dietary fiber on gut microbiota in host health and disease.
        Cell Host Microbe. 2018; 23: 705-715
        • van de Wouw M.
        • Schellekens H.
        • Dinan T.G.
        • Cryan J.F.
        Microbiota-gut-brain axis: Modulator of host metabolism and appetite.
        J Nutr. 2017; 147: 727-745
        • Turnbaugh P.J.
        • Ley R.E.
        • Hamady M.
        • Fraser-Liggett C.M.
        • Knight R.
        • Gordon J.I.
        The Human Microbiome Project.
        Nature. 2007; 449: 804-810
        • Klurfeld D.M.
        • Davis C.D.
        • Karp R.W.
        • et al.
        Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome.
        Am J Physiol Metab. 2018; 315: E1087-E1097
        • Sadowsky M.J.
        • Staley C.
        • Heiner C.
        • et al.
        Analysis of gut microbiota—An ever changing landscape.
        Gut Microbes. 2017; 8: 268-275
        • Lloyd-Price J.
        • Abu-Ali G.
        • Huttenhower C.
        The healthy human microbiome.
        Genome Med. 2016; 8: 51
        • Sheflin A.M.
        • Melby C.L.
        • Carbonero F.
        • Weir T.L.
        Linking dietary patterns with gut microbial composition and function.
        Gut Microbes. 2017; 8: 113-129
        • Nagpal R.
        • Mainali R.
        • Ahmadi S.
        • et al.
        Gut microbiome and aging: Physiological and mechanistic insights.
        Nutr Heal Aging. 2018; 4: 267-285
        • Bokulich N.A.
        • Chung J.
        • Battaglia T.
        • et al.
        Antibiotics, birth mode, and diet shape microbiome maturation during early life.
        Sci Transl Med. 2016; 8: 343ra82
        • Vangay P.
        • Johnson A.J.
        • Ward T.L.
        • et al.
        US immigration Westernizes the human gut microbiome.
        Cell. 2018; 175 (962-972.e10)
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • et al.
        Evolution of mammals and their gut microbes.
        Science. 2008; 320: 1647-1651
        • Davies G.J.
        • Crowder M.
        • Dickerson J.W.
        Dietary fibre intakes of individuals with different eating patterns.
        Hum Nutr Appl Nutr. 1985; 39: 139-148
        • Losasso C.
        • Eckert E.M.
        • Mastrorilli E.
        • et al.
        Assessing the influence of vegan, vegetarian and omnivore oriented Westernized dietary styles on human gut microbiota: A cross-sectional study.
        Front Microbiol. 2018; 9: 317
        • Carlson J.L.
        • Erickson J.M.
        • Lloyd B.B.
        • Slavin J.L.
        Health effects and sources of prebiotic dietary fiber.
        Curr Dev Nutr. 2018; 2: nzy005
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • et al.
        Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 491-502
        • Van Loo J.
        • Coussement P.
        • De Leenheer L.
        • Hoebregs H.
        • Smits G.
        On the presence of inulin and oligofructose as natural ingredients in the western diet.
        Crit Rev Food Sci Nutr. 1995; 35: 525-552
        • So D.
        • Whelan K.
        • Rossi M.
        • et al.
        Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis.
        Am J Clin Nutr. 2018; 107: 965-983
        • Vanegas S.M.
        • Meydani M.
        • Barnett J.B.
        • et al.
        Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults.
        Am J Clin Nutr. 2017; 105: 635-650
        • Vuholm S.
        • Nielsen D.S.
        • Iversen K.N.
        • et al.
        Whole-grain rye and wheat affect some markers of gut health without altering the fecal microbiota in healthy overweight adults: A 6-week randomized trial.
        J Nutr. 2017; 147: jn250647
        • Roager H.M.
        • Vogt J.K.
        • Kristensen M.
        • et al.
        Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial.
        Gut. 2019; 68: 83-93
        • Holscher H.D.
        • Guetterman H.M.
        • Swanson K.S.
        • et al.
        Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial.
        J Nutr. 2018; 148: 861-867
        • Holscher H.
        • Taylor A.
        • Swanson K.
        • Novotny J.
        • Baer D.
        Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: A randomized controlled trial.
        Nutrients. 2018; 10: 126
        • Ukhanova M.
        • Wang X.
        • Baer D.J.
        • Novotny J.A.
        • Fredborg M.
        • Mai V.
        Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.
        Br J Nutr. 2014; 111: 2146-2152
        • Kaczmarek J.L.
        • Liu X.
        • Charron C.S.
        • et al.
        Broccoli consumption affects the human gastrointestinal microbiota.
        J Nutr Biochem. 2019; 63: 27-34
        • Klinder A.
        • Shen Q.
        • Heppel S.
        • Lovegrove J.A.
        • Rowland I.
        • Tuohy K.M.
        Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.
        . 2016; 7: 1788-1796
        • Puupponen-Pimiä R.
        • Seppänen-Laakso T.
        • Kankainen M.
        • et al.
        Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome.
        . 2013; 57: 2258-2263
        • Ravn-Haren G.
        • Dragsted L.O.
        • Buch-Andersen T.
        • et al.
        Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers.
        Eur J Nutr. 2013; 52: 1875-1889
        • Li F.
        • Hullar M.A.J.
        • Schwarz Y.
        • Lampe J.W.
        Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet.
        J Nutr. 2009; 139: 1685-1691
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Foerster J.
        • Maskarinec G.
        • Reichardt N.
        • et al.
        The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: A randomized crossover intervention trial.
        PLoS One. 2014; 9: e109606
        • Fava F.
        • Gitau R.
        • Griffin B.A.
        • Gibson G.R.
        • Tuohy K.M.
        • Lovegrove J.A.
        The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population.
        Int J Obes. 2013; 37: 216-223
        • Holscher H.D.
        Dietary fiber and prebiotics and the gastrointestinal microbiota.
        Gut Microbes. 2017; 8: 172-184
        • Fraga C.G.
        • Croft K.D.
        • Kennedy D.O.
        • Tomás-Barberán F.A.
        The effects of polyphenols and other bioactives on human health.
        Food Funct. 2019; 10: 514-528
        • Probst Y.C.
        • Guan V.X.
        • Kent K.
        Dietary phytochemical intake from foods and health outcomes: A systematic review protocol and preliminary scoping.
        BMJ Open. 2017; 7: e013337
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • De Filippo C.
        • Di Paola M.
        • Ramazzotti M.
        • et al.
        Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy.
        Front Microbiol. 2017; 8: 1979
        • Bello M.G.D.
        • Knight R.
        • Gilbert J.A.
        • Blaser M.J.
        Preserving microbial diversity.
        Science. 2018; 362: 33-34
        • Sonnenburg E.D.
        • Smits S.A.
        • Tikhonov M.
        • Higginbottom S.K.
        • Wingreen N.S.
        • Sonnenburg J.L.
        Diet-induced extinctions in the gut microbiota compound over generations.
        Nature. 2016; 529: 212-215
        • Healey G.
        • Murphy R.
        • Butts C.
        • Brough L.
        • Whelan K.
        • Coad J.
        Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomised, double-blind, placebo-controlled, cross-over, human intervention study.
        Br J Nutr. 2018; 119: 176-189
        • Bowman S.A.
        • Clemens J.C.
        • Friday J.E.
        • et al.
        Food patterns equivalents intakes by Americans: What We Eat in America, NHANES 2003-2004 and 2015- 2016.
        Food Surveys Research Group, Washington, DC2018 (Dietary Data Brief no. 20)
        • McDonald D.
        • Hyde E.
        • Debelius J.W.
        • et al.
        American gut: An open platform for citizen science microbiome research.
        mSystems. 2018; 3
        • Zhao L.
        • Zhang F.
        • Ding X.
        • et al.
        Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
        Science. 2018; 359: 1151-1156
        • Lam Y.Y.
        • Zhang C.
        • Zhao L.
        Causality in dietary interventions—Building a case for gut microbiota.
        Genome Med. 2018; 10: 62
        • Meijnikman A.S.
        • Gerdes V.E.
        • Nieuwdorp M.
        • Herrema H.
        Evaluating causality of gut microbiota in obesity and diabetes in humans.
        Endocr Rev. 2018; 39: 133-153
        • Arora T.
        • Bäckhed F.
        The gut microbiota and metabolic disease: Current understanding and future perspectives.
        J Intern Med. 2016; 280: 339-349
        • Ley R.E.
        • Backhed F.
        • Turnbaugh P.
        • Lozupone C.A.
        • Knight R.D.
        • Gordon J.I.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci. 2005; 102: 11070-11075
        • Turnbaugh P.J.
        Microbes and diet-induced obesity: Fast, cheap, and out of control.
        Cell Host Microbe. 2017; 21: 278-281
        • Koss-Mikołajczyk I.
        • Kusznierewicz B.
        • Wiczkowski W.
        • Płatosz N.
        • Bartoszek A.
        Phytochemical composition and biological activities of differently pigmented cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) varieties.
        J Sci Food Agric. 2019; 99: 5499-5507
        • Kellingray L.
        • Tapp H.S.
        • Saha S.
        • Doleman J.F.
        • Narbad A.
        • Mithen R.F.
        Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study.
        Mol Nutr Food Res. 2017; 61
        • Cooper D.
        • Kable M.
        • Marco M.
        • et al.
        The effects of moderate whole grain consumption on fasting glucose and lipids, gastrointestinal symptoms, and microbiota.
        Nutrients. 2017; 9: 173
        • Eid N.
        • Osmanova H.
        • Natchez C.
        • et al.
        Impact of palm date consumption on microbiota growth and large intestinal health: A randomised, controlled, cross-over, human intervention study.
        Br J Nutr. 2015; 114: 1226-1236
        • Carvalho-Wells A.L.
        • Helmolz K.
        • Nodet C.
        • et al.
        Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study.
        Br J Nutr. 2010; 104: 1353-1356
        • Brooks A.W.
        • Priya S.
        • Blekhman R.
        • Bordenstein S.R.
        Gut microbiota diversity across ethnicities in the United States.
        PLOS Biol. 2018; 16: e2006842
        • Kok C.R.
        • Hutkins R.
        Yogurt and other fermented foods as sources of health-promoting bacteria.
        Nutr Rev. 2018; 76: 4-15
        • Willis H.J.
        • Thomas W.
        • Willis D.J.
        • Slavin J.L.
        Feasibility of measuring gastric emptying time, with a wireless motility device, after subjects consume fiber-matched liquid and solid breakfasts.
        Appetite. 2011; 57: 38-44
        • Kalantar-Zadeh K.
        • Berean K.J.
        • Ha N.
        • et al.
        A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut.
        Nat Electron. 2018; 1: 79-87
        • Harvie R.
        • Chanyi R.M.
        • Burton J.P.
        • Schultz M.
        Using the human gastrointestinal microbiome to personalize nutrition advice: Are registered dietitian nutritionists ready for the opportunities and challenges?.
        J Acad Nutr Diet. 2017; 117: 1865-1869
        • Mendes-Soares H.
        • Raveh-Sadka T.
        • Azulay S.
        • et al.
        Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes.
        JAMA Netw Open. 2019; 2: e188102
        • Zeevi D.
        • Korem T.
        • Zmora N.
        • et al.
        Personalized nutrition by prediction of glycemic responses.
        Cell. 2015; 163: 1079-1094
        • Worsfold L.
        • Grant B.L.
        • Barnhill G.C.
        The essential practice competencies for the Commission on Dietetic Registration’s credentialed nutrition and dietetics practitioners.
        J Acad Nutr Diet. 2015; 115: 978-984
        • Roberfroid M.
        • Gibson G.R.
        • Hoyles L.
        • et al.
        Prebiotic effects: Metabolic and health benefits.
        Br J Nutr. 2010; 104: S1-S63

      Biography

      H. J. Willis is an adjunct assistant professor, and J. L. Slavin is a professor, Department of Food Science and Nutrition, University of Minnesota, St Paul.