Translating Mechanism-Based Strategies to Break the Obesity−Cancer Link: A Narrative Review

Published:March 22, 2018DOI:https://doi.org/10.1016/j.jand.2017.08.112

      Abstract

      Prevalence of obesity, an established risk factor for many cancers, has increased dramatically over the past 50 years in the United States and across the globe. Relative to normoweight cancer patients, obese cancer patients often have poorer prognoses, resistance to chemotherapies, and are more likely to develop distant metastases. Recent progress on elucidating the mechanisms underlying the obesity−cancer connection suggests that obesity exerts pleomorphic effects on pathways related to tumor development and progression and, thus, there are multiple opportunities for primary prevention and treatment of obesity-related cancers. Obesity-associated alterations, including systemic metabolism, adipose inflammation, growth factor signaling, and angiogenesis, are emerging as primary drivers of obesity-associated cancer development and progression. These obesity-associated host factors interact with the intrinsic molecular characteristics of cancer cells, facilitating several of the hallmarks of cancer. Each is considered in the context of potential preventive and therapeutic strategies to reduce the burden of obesity-related cancers. In addition, this review focuses on emerging mechanisms behind the obesity−cancer link, as well as relevant dietary interventions, including calorie restriction, intermittent fasting, low-fat diet, and ketogenic diet, that are being implemented in preclinical and clinical trials, with the ultimate goal of reducing incidence and progression of obesity-related cancers.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        • Carroll M.D.
        • Kit B.K.
        • Ogden C.L.
        Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010.
        JAMA. 2012; 307: 491-497
        • Ng M.
        • Fleming T.
        • Robinson M.
        • et al.
        Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013.
        Lancet. 2014; 384: 766-781
        • Khaodhiar L.
        • McCowen K.C.
        • Blackburn G.L.
        Obesity and its comorbid conditions.
        Clin Cornerstone. 1999; 2: 17-31
        • Lauby-Secretan B.
        • Scoccianti C.
        • Loomis D.
        • et al.
        Body fatness and cancer—Viewpoint of the IARC Working Group.
        N Engl J Med. 2016; 375: 794-798
        • Arnold M.
        • Pandeya N.
        • Byrnes G.
        • et al.
        Global burden of cancer attributable to high body-mass index in 2012: A population-based study.
        Lancet Oncol. 2015; 16: 36-46
        • Lashinger L.M.
        • Rossi E.L.
        • Hursting S.D.
        Obesity and resistance to cancer chemotherapy: Interacting roles of inflammation and metabolic dysregulation.
        Clin Pharmacol Ther. 2014; 96: 458-463
        • Calle E.E.
        • Rodriguez C.
        • Walker-Thurmond K.
        • Thun M.J.
        Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults.
        N Engl J Med. 2003; 348: 1625-1638
        • Allott E.H.
        • Masko E.M.
        • Freedland S.J.
        Obesity and prostate cancer: Weighing the evidence.
        Eur Urol. 2013; 63: 800-809
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: The next generation.
        Cell. 2011; 144: 646-674
        • Donohoe C.L.
        • Lysaght J.
        • O'Sullivan J.
        • Reynolds J.V.
        Emerging concepts linking obesity with the hallmarks of cancer.
        Trends Endocrinol Metab. 2017; 28: 46-62
        • Warburg O.
        • Posener K.
        • Negelein E.
        Über den Stoffwechsel der Carcinomzelle.
        Biochem Zeitschr. 1924; : 309-344
        • Pavlova N.N.
        • Thompson C.B.
        The emerging hallmarks of cancer metabolism.
        Cell Metab. 2016; 23: 27-47
        • Mayers J.R.
        • Vander Heiden M.G.
        Nature and nurture: What determines tumor metabolic phenotypes?.
        Cancer Res. 2017; 77: 3131-3134
        • O'Flanagan C.H.
        • Smith L.A.
        • McDonell S.B.
        • Hursting S.D.
        When less may be more: Calorie restriction and response to cancer therapy.
        BMC Med. 2017; 15: 106
        • Dupuy F.
        • Tabaries S.
        • Andrzejewski S.
        • et al.
        PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer.
        Cell Metab. 2015; 22: 577-589
        • Lehuede C.
        • Dupuy F.
        • Rabinovitch R.
        • Jones R.G.
        • Siegel P.M.
        Metabolic plasticity as a determinant of tumor growth and metastasis.
        Cancer Res. 2016; 76: 5201-5208
        • Pascual G.
        • Avgustinova A.
        • Mejetta S.
        • et al.
        Targeting metastasis-initiating cells through the fatty acid receptor CD36.
        Nature. 2017; 541: 41-45
        • Vander Heiden M.G.
        • Cantley L.C.
        • Thompson C.B.
        Understanding the Warburg effect: The metabolic requirements of cell proliferation.
        Science. 2009; 324: 1029-1033
        • Giles E.D.
        • Wellberg E.A.
        • Astling D.P.
        • et al.
        Obesity and overfeeding affecting both tumor and systemic metabolism activates the progesterone receptor to contribute to postmenopausal breast cancer.
        Cancer Res. 2012; 72: 6490-6501
        • Cavazos D.A.
        • deGraffenried M.J.
        • Apte S.A.
        • Bowers L.W.
        • Whelan K.A.
        • deGraffenried L.A.
        Obesity promotes aerobic glycolysis in prostate cancer cells.
        Nutr Cancer. 2014; 66: 1179-1186
        • Klil-Drori A.J.
        • Azoulay L.
        • Pollak M.N.
        Cancer, obesity, diabetes, and antidiabetic drugs: Is the fog clearing?.
        Nat Rev Clin Oncol. 2017; 14: 85-99
        • Hursting S.D.
        • Berger N.A.
        Energy balance, host-related factors, and cancer progression.
        J Clin Oncol. 2010; 28: 4058-4065
        • Singla P.
        • Bardoloi A.
        • Parkash A.A.
        Metabolic effects of obesity: A review.
        World J Diabetes. 2010; 1: 76-88
        • O'Connell T.M.
        The complex role of branched chain amino acids in diabetes and cancer.
        Metabolites. 2013; 3: 931-945
        • Ulmer H.
        • Borena W.
        • Rapp K.
        • et al.
        Serum triglyceride concentrations and cancer risk in a large cohort study in Austria.
        Br J Cancer. 2009; 101: 1202-1206
        • Coppola J.A.
        • Shrubsole M.J.
        • Cai Q.
        • et al.
        Plasma lipid levels and colorectal adenoma risk.
        Cancer Causes Control. 2015; 26: 635-643
        • Kimmelman A.C.
        • White E.
        Autophagy and tumor metabolism.
        Cell Metab. 2017; 25: 1037-1043
        • Young A.R.
        • Narita M.
        • Ferreira M.
        • et al.
        Autophagy mediates the mitotic senescence transition.
        Genes Dev. 2009; 23: 798-803
        • Dorr J.R.
        • Yu Y.
        • Milanovic M.
        • et al.
        Synthetic lethal metabolic targeting of cellular senescence in cancer therapy.
        Nature. 2013; 501: 421-425
        • Haim Y.
        • Bluher M.
        • Slutsky N.
        • et al.
        Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1.
        Autophagy. 2015; 11: 2074-2088
        • Kosacka J.
        • Kern M.
        • Kloting N.
        • et al.
        Autophagy in adipose tissue of patients with obesity and type 2 diabetes.
        Mol Cell Endocrinol. 2015; 409: 21-32
        • Cairo M.
        • Villarroya J.
        • Cereijo R.
        • Campderros L.
        • Giralt M.
        • Villarroya F.
        Thermogenic activation represses autophagy in brown adipose tissue.
        Int J Obes (Lond). 2016; 40: 1591-1599
        • Lashinger L.M.
        • O'Flanagan C.H.
        • Dunlap S.M.
        • et al.
        Starving cancer from the outside and inside: Separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors.
        Cancer Metab. 2016; 4: 18
        • Braun S.
        • Bitton-Worms K.
        • LeRoith D.
        The link between the metabolic syndrome and cancer.
        Int J Biol Sci. 2011; 7: 1003-1015
        • Agrogiannis G.D.
        • Sifakis S.
        • Patsouris E.S.
        • Konstantinidou A.E.
        Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
        Mol Med Rep. 2014; 10: 579-584
        • Pollak M.
        The insulin and insulin-like growth factor receptor family in neoplasia: An update.
        Nat Rev Cancer. 2012; 12: 159-169
        • Brahmkhatri V.P.
        • Prasanna C.
        • Atreya H.S.
        Insulin-like growth factor system in cancer: Novel targeted therapies.
        Biomed Res Int. 2015; 2015: 538019
        • Yu H.
        • Rohan T.
        Role of the insulin-like growth factor family in cancer development and progression.
        J Natl Cancer Inst. 2000; 92: 1472-1489
        • Wong K.K.
        • Engelman J.A.
        • Cantley L.C.
        Targeting the PI3K signaling pathway in cancer.
        Curr Opin Genet Dev. 2010; 20: 87-90
        • Memmott R.M.
        • Dennis P.A.
        Akt-dependent and -independent mechanisms of mTOR regulation in cancer.
        Cell Signal. 2009; 21: 656-664
        • Hardie D.G.
        • Ross F.A.
        • Hawley S.A.
        AMPK: A nutrient and energy sensor that maintains energy homeostasis.
        Nat Rev Mol Cell Biol. 2012; 13: 251-262
        • Populo H.
        • Lopes J.M.
        • Soares P.
        The mTOR signalling pathway in human cancer.
        Int J Mol Sci. 2012; 13: 1886-1918
        • Athar M.
        • Kopelovich L.
        Rapamycin and mTORC1 inhibition in the mouse: Skin cancer prevention.
        Cancer Prev Res (Phila). 2011; 4: 957-961
        • Nogueira L.M.
        • Dunlap S.M.
        • Ford N.A.
        • Hursting S.D.
        Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity.
        Endocr Relat Cancer. 2012; 19: 57-68
        • Cifarelli V.
        • Lashinger L.M.
        • Devlin K.L.
        • et al.
        Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms.
        Diabetes. 2015; 64: 1632-1642
        • Tomimoto A.
        • Endo H.
        • Sugiyama M.
        • et al.
        Metformin suppresses intestinal polyp growth in ApcMin/+ mice.
        Cancer Sci. 2008; 99: 2136-2141
        • Chaudhary S.C.
        • Kurundkar D.
        • Elmets C.A.
        • Kopelovich L.
        • Athar M.
        Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway.
        Photochem Photobiol. 2012; 88: 1149-1156
        • De Angel R.E.
        • Conti C.J.
        • Wheatley K.E.
        • et al.
        The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by RAD001.
        Mol Carcinog. 2013; 52: 446-458
        • Checkley L.A.
        • Rho O.
        • Moore T.
        • Hursting S.
        • DiGiovanni J.
        Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate.
        Cancer Prev Res (Phila). 2011; 4: 1011-1020
        • Saely C.H.
        • Geiger K.
        • Drexel H.
        Brown versus white adipose tissue: A mini-review.
        Gerontology. 2012; 58: 15-23
        • Eto H.
        • Suga H.
        • Matsumoto D.
        • et al.
        Characterization of structure and cellular components of aspirated and excised adipose tissue.
        Plast Reconstr Surg. 2009; 124: 1087-1097
        • Gautron L.
        • Elmquist J.K.
        Sixteen years and counting: An update on leptin in energy balance.
        J Clin Invest. 2011; 121: 2087-2093
        • Friedman J.M.
        • Mantzoros C.S.
        20 years of leptin: From the discovery of the leptin gene to leptin in our therapeutic armamentarium.
        Metabolism. 2015; 64: 1-4
        • Park H.K.
        • Ahima R.S.
        Leptin signaling.
        F1000Prime Rep. 2014; 6: 73
        • Mullen M.
        • Gonzalez-Perez R.R.
        Leptin-induced JAK/STAT cignaling and cancer growth.
        Vaccines (Basel). 2016; 4
        • Yu H.
        • Lee H.
        • Herrmann A.
        • Buettner R.
        • Jove R.
        Revisiting STAT3 signalling in cancer: New and unexpected biological functions.
        Nat Rev Cancer. 2014; 14: 736-746
        • Lee B.
        • Shao J.
        Adiponectin and energy homeostasis.
        Rev Endocr Metab Disord. 2014; 15: 149-156
        • Rabe K.
        • Lehrke M.
        • Parhofer K.G.
        • Broedl U.C.
        Adipokines and insulin resistance.
        Mol Med. 2008; 14: 741-751
        • Guenther M.
        • James R.
        • Marks J.
        • Zhao S.
        • Szabo A.
        • Kidambi S.
        Adiposity distribution influences circulating adiponectin levels.
        Transl Res. 2014; 164: 270-277
        • Vaiopoulos A.G.
        • Marinou K.
        • Christodoulides C.
        • Koutsilieris M.
        The role of adiponectin in human vascular physiology.
        Int J Cardiol. 2012; 155: 188-193
        • Fantuzzi G.
        Adiponectin in inflammatory and immune-mediated diseases.
        Cytokine. 2013; 64: 1-10
        • Otvos Jr., L.
        • Haspinger E.
        • La Russa F.
        • et al.
        Design and development of a peptide-based adiponectin receptor agonist for cancer treatment.
        BMC Biotechnol. 2011; 11: 90
        • Ollberding N.J.
        • Kim Y.
        • Shvetsov Y.B.
        • et al.
        Prediagnostic leptin, adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer.
        Cancer Prev Res (Phila). 2013; 6: 188-195
        • Calle E.E.
        • Kaaks R.
        Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms.
        Nat Rev Cancer. 2004; 4: 579-591
        • Simpson E.R.
        Sources of estrogen and their importance.
        J Steroid Biochem Mol Biol. 2003; 86: 225-230
        • Cleary M.P.
        • Grossmann M.E.
        Minireview: Obesity and breast cancer: The estrogen connection.
        Endocrinology. 2009; 150: 2537-2542
        • Kirschner M.A.
        • Schneider G.
        • Ertel N.H.
        • Worton E.
        Obesity, androgens, estrogens, and cancer risk.
        Cancer Res. 1982; 42: 3281s-3285s
        • Meyer M.R.
        • Clegg D.J.
        • Prossnitz E.R.
        • Barton M.
        Obesity, insulin resistance and diabetes: Sex differences and role of oestrogen receptors.
        Acta Physiol (Oxf). 2011; 203: 259-269
        • Allan C.A.
        • McLachlan R.I.
        Androgens and obesity.
        Curr Opin Endocrinol Diabetes Obes. 2010; 17: 224-232
        • Heldring N.
        • Pike A.
        • Andersson S.
        • et al.
        Estrogen receptors: How do they signal and what are their targets.
        Physiol Rev. 2007; 87: 905-931
        • Huang B.
        • Warner M.
        • Gustafsson J.A.
        Estrogen receptors in breast carcinogenesis and endocrine therapy.
        Mol Cell Endocrinol. 2015; 418: 240-244
        • Althuis M.D.
        • Fergenbaum J.H.
        • Garcia-Closas M.
        • Brinton L.A.
        • Madigan M.P.
        • Sherman M.E.
        Etiology of hormone receptor-defined breast cancer: A systematic review of the literature.
        Cancer Epidemiol Biomarkers Prev. 2004; 13: 1558-1568
        • Goodwin P.J.
        Obesity and endocrine therapy: Host factors and breast cancer outcome.
        Breast. 2013; 22: S44-S47
        • Bernstein L.
        • Ross R.K.
        Endogenous hormones and breast cancer risk.
        Epidemiol Rev. 1993; 15: 48-65
        • Ho S.M.
        Estrogen, progesterone and epithelial ovarian cancer.
        Reprod Biol Endocrinol. 2003; 1: 73
        • Rizner T.L.
        Estrogen biosynthesis, phase I and phase II metabolism, and action in endometrial cancer.
        Mol Cell Endocrinol. 2013; 381: 124-139
        • Roddam A.W.
        • Allen N.E.
        • Appleby P.
        • Key T.J.
        • Endogenous Hormones and Prostate Cancer Collaborative Group
        Endogenous sex hormones and prostate cancer: A collaborative analysis of 18 prospective studies.
        J Natl Cancer Inst. 2008; 100: 170-183
        • Schnoeller T.
        • Jentzmik F.
        • Rinnab L.
        • et al.
        Circulating free testosterone is an independent predictor of advanced disease in patients with clinically localized prostate cancer.
        World J Urol. 2013; 31: 253-259
        • Folkerd E.J.
        • Dowsett M.
        Influence of sex hormones on cancer progression.
        J Clin Oncol. 2010; 28: 4038-4044
        • Subbaramaiah K.
        • Howe L.R.
        • Bhardwaj P.
        • et al.
        Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland.
        Cancer Prev Res (Phila). 2011; 4: 329-346
        • Duncan R.E.
        • Ahmadian M.
        • Jaworski K.
        • Sarkadi-Nagy E.
        • Sul H.S.
        Regulation of lipolysis in adipocytes.
        Annu Rev Nutr. 2007; 27: 79-101
        • Choe S.S.
        • Huh J.Y.
        • Hwang I.J.
        • Kim J.I.
        • Kim J.B.
        Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders.
        Front Endocrinol (Lausanne). 2016; 7: 30
        • Ward P.S.
        • Thompson C.B.
        Metabolic reprogramming: A cancer hallmark even warburg did not anticipate.
        Cancer Cell. 2012; 21: 297-308
        • Balaban S.
        • Lee L.S.
        • Schreuder M.
        • Hoy A.J.
        Obesity and cancer progression: Is there a role of fatty acid metabolism?.
        Biomed Res Int. 2015; 2015: 274585
        • O'Flanagan C.H.
        • Bowers L.W.
        • Hursting S.D.
        A weighty problem: Metabolic perturbations and the obesity-cancer link.
        Horm Mol Biol Clin Investig. 2015; 23: 47-57
        • Henry S.L.
        • Bensley J.G.
        • Wood-Bradley R.J.
        • Cullen-McEwen L.A.
        • Bertram J.F.
        • Armitage J.A.
        White adipocytes: More than just fat depots.
        Int J Biochem Cell Biol. 2012; 44: 435-440
        • Suganami T.
        • Tanaka M.
        • Ogawa Y.
        Adipose tissue inflammation and ectopic lipid accumulation.
        Endocr J. 2012; 59: 849-857
        • Geisler C.E.
        • Renquist B.J.
        Hepatic lipid accumulation: Cause and consequence of dysregulated glucoregulatory hormones.
        J Endocrinol. 2017; 234: R1-R21
        • Browning J.D.
        • Szczepaniak L.S.
        • Dobbins R.
        • et al.
        Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity.
        Hepatology. 2004; 40: 1387-1395
        • Bellentani S.
        • Scaglioni F.
        • Marino M.
        • Bedogni G.
        Epidemiology of non-alcoholic fatty liver disease.
        Dig Dis. 2010; 28: 155-161
        • White D.L.
        • Kanwal F.
        • El-Serag H.B.
        Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review.
        Clin Gastroenterol Hepatol. 2012; 10: 1342-1359.e1342
        • Vanni E.
        • Bugianesi E.
        • Kotronen A.
        • De Minicis S.
        • Yki-Jarvinen H.
        • Svegliati-Baroni G.
        From the metabolic syndrome to NAFLD or vice versa?.
        Dig Liver Dis. 2010; 42: 320-330
        • Berardis S.
        • Sokal E.
        Pediatric non-alcoholic fatty liver disease: An increasing public health issue.
        Eur J Pediatr. 2014; 173: 131-139
        • Tolman K.G.
        • Dalpiaz A.S.
        Treatment of non-alcoholic fatty liver disease.
        Ther Clin Risk Manag. 2007; 3: 1153-1163
        • Farese Jr., R.V.
        • Zechner R.
        • Newgard C.B.
        • Walther T.C.
        The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance.
        Cell Metab. 2012; 15: 570-573
        • Hui J.M.
        • Kench J.G.
        • Chitturi S.
        • et al.
        Long-term outcomes of cirrhosis in nonalcoholic steatohepatitis compared with hepatitis C.
        Hepatology. 2003; 38: 420-427
        • Tushuizen M.E.
        • Bunck M.C.
        • Pouwels P.J.
        • et al.
        Pancreatic fat content and beta-cell function in men with and without type 2 diabetes.
        Diabetes Care. 2007; 30: 2916-2921
        • Heni M.
        • Machann J.
        • Staiger H.
        • et al.
        Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: A nuclear magnetic resonance study.
        Diabetes Metab Res Rev. 2010; 26: 200-205
        • Smits M.M.
        • van Geenen E.J.
        The clinical significance of pancreatic steatosis.
        Nat Rev Gastroenterol Hepatol. 2011; 8: 169-177
        • van Geenen E.J.
        • Smits M.M.
        • Schreuder T.C.
        • van der Peet D.L.
        • Bloemena E.
        • Mulder C.J.
        Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease.
        Pancreas. 2010; 39: 1185-1190
        • Byrne A.M.
        • Bouchier-Hayes D.J.
        • Harmey J.H.
        Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF).
        J Cell Mol Med. 2005; 9: 777-794
        • Cottam D.
        • Fisher B.
        • Ziemba A.
        • et al.
        Tumor growth factor expression in obesity and changes in expression with weight loss: Another cause of increased virulence and incidence of cancer in obesity.
        Surg Obes Relat Dis. 2010; 6: 538-541
        • Iwaki T.
        • Urano T.
        • Umemura K.
        PAI-1, progress in understanding the clinical problem and its aetiology.
        Br J Haematol. 2012; 157: 291-298
        • Bauman K.A.
        • Wettlaufer S.H.
        • Okunishi K.
        • et al.
        The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice.
        J Clin Invest. 2010; 120: 1950-1960
        • Malik R.
        • Lelkes P.I.
        • Cukierman E.
        Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.
        Trends Biotechnol. 2015; 33: 230-236
        • Slaughter K.N.
        • Thai T.
        • Penaroza S.
        • et al.
        Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer.
        Gynecol Oncol. 2014; 133: 11-15
        • Sahar S.
        • Sassone-Corsi P.
        Metabolism and cancer: The circadian clock connection.
        Nat Rev Cancer. 2009; 9: 886-896
        • Schwabe R.F.
        • Jobin C.
        The microbiome and cancer.
        Nat Rev Cancer. 2013; 13: 800-812
        • Rogers C.J.
        • Prabhu K.S.
        • Vijay-Kumar M.
        The microbiome and obesity-an established risk for certain types of cancer.
        Cancer J. 2014; 20: 176-180
        • Froy O.
        Circadian rhythms and obesity in mammals.
        ISRN Obes. 2012; 2012: 437198
        • Froy O.
        Metabolism and circadian rhythms—Implications for obesity.
        Endocr Rev. 2010; 31: 1-24
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Turnbaugh P.J.
        • Hamady M.
        • Yatsunenko T.
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2009; 457: 480-484
        • Cani P.D.
        • Possemiers S.
        • Van de Wiele T.
        • et al.
        Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.
        Gut. 2009; 58: 1091-1103
        • Cani P.D.
        • Bibiloni R.
        • Knauf C.
        • et al.
        Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.
        Diabetes. 2008; 57: 1470-1481
        • Casagrande D.S.
        • Rosa D.D.
        • Umpierre D.
        • Sarmento R.A.
        • Rodrigues C.G.
        • Schaan B.D.
        Incidence of cancer following bariatric surgery: Systematic review and meta-analysis.
        Obes Surg. 2014; 24: 1499-1509
        • Mahoney L.B.
        • Denny C.A.
        • Seyfried T.N.
        Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans.
        Lipids Health Dis. 2006; 5: 13
        • Colman R.J.
        • Anderson R.M.
        • Johnson S.C.
        • et al.
        Caloric restriction delays disease onset and mortality in rhesus monkeys.
        Science. 2009; 325: 201-204
        • Longo V.D.
        • Fontana L.
        Calorie restriction and cancer prevention: Metabolic and molecular mechanisms.
        Trends Pharmacol Sci. 2010; 31: 89-98
        • Mattison J.A.
        • Roth G.S.
        • Beasley T.M.
        • et al.
        Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.
        Nature. 2012; 489: 318-321
        • Hursting S.D.
        • Dunlap S.M.
        • Ford N.A.
        • Hursting M.J.
        • Lashinger L.M.
        Calorie restriction and cancer prevention: A mechanistic perspective.
        Cancer Metab. 2013; 1: 10
        • Lv M.
        • Zhu X.
        • Wang H.
        • Wang F.
        • Guan W.
        Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: A systematic review and meta-analysis.
        PLoS One. 2014; 9: e115147
        • Weiss E.P.
        • Racette S.B.
        • Villareal D.T.
        • et al.
        Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: A randomized controlled trial.
        Am J Clin Nutr. 2006; 84: 1033-1042
        • Most J.
        • Tosti V.
        • Redman L.M.
        • Fontana L.
        Calorie restriction in humans: An update.
        Ageing Res Rev. 2017; 39: 36-45
        • Byers T.
        • Sedjo R.L.
        Does intentional weight loss reduce cancer risk?.
        Diabetes Obes Metab. 2011; 13: 1063-1072
        • Fabian C.J.
        • Kimler B.F.
        • Donnelly J.E.
        • et al.
        Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women.
        Breast Cancer Res Treat. 2013; 142: 119-132
        • Fontana L.
        • Villareal D.T.
        • Das S.K.
        • et al.
        Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial.
        Aging Cell. 2016; 15: 22-27
        • Demark-Wahnefried W.
        • Nix J.W.
        • Hunter G.R.
        • et al.
        Feasibility outcomes of a presurgical randomized controlled trial exploring the impact of caloric restriction and increased physical activity versus a wait-list control on tumor characteristics and circulating biomarkers in men electing prostatectomy for prostate cancer.
        BMC Cancer. 2016; 16: 61
        • Saleh A.D.
        • Simone B.A.
        • Palazzo J.
        • et al.
        Caloric restriction augments radiation efficacy in breast cancer.
        Cell Cycle. 2013; 12: 1955-1963
        • Brandhorst S.
        • Longo V.D.
        Fasting and caloric restriction in cancer prevention and treatment.
        Recent Results Cancer Res. 2016; 207: 241-266
        • Mattson M.P.
        • Longo V.D.
        • Harvie M.
        Impact of intermittent fasting on health and disease processes.
        Ageing Res Rev. 2017; 39: 46-58
        • Longo V.D.
        • Mattson M.P.
        Fasting: Molecular mechanisms and clinical applications.
        Cell Metab. 2014; 19: 181-192
        • Descamps O.
        • Riondel J.
        • Ducros V.
        • Roussel A.M.
        Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: Effect of alternate-day fasting.
        Mech Ageing Dev. 2005; 126: 1185-1191
        • Harvie M.
        • Howell A.
        Energy restriction and the prevention of breast cancer.
        Proc Nutr Soc. 2012; 71: 263-275
        • Harvie M.N.
        • Howell T.
        Could intermittent energy restriction and intermittent fasting reduce rates of cancer in obese, overweight, and normal-weight subjects? A summary of evidence.
        Adv Nutr. 2016; 7: 690-705
        • Harvie M.N.
        • Pegington M.
        • Mattson M.P.
        • et al.
        The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women.
        Int J Obes (Lond). 2011; 35: 714-727
        • de Lorgeril M.
        • Salen P.
        • Martin J.L.
        • Monjaud I.
        • Boucher P.
        • Mamelle N.
        Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate.
        Arch Intern Med. 1998; 158: 1181-1187
        • Sofi F.
        • Cesari F.
        • Abbate R.
        • Gensini G.F.
        • Casini A.
        Adherence to Mediterranean diet and health status: Meta-analysis.
        BMJ. 2008; 337: a1344
        • Brown T.
        • Avenell A.
        • Edmunds L.D.
        • et al.
        Systematic review of long-term lifestyle interventions to prevent weight gain and morbidity in adults.
        Obes Rev. 2009; 10: 627-638
        • Romaguera D.
        • Norat T.
        • Mouw T.
        • et al.
        Adherence to the Mediterranean diet is associated with lower abdominal adiposity in European men and women.
        J Nutr. 2009; 139: 1728-1737
        • Schwingshackl L.
        • Hoffmann G.
        Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis of observational studies.
        Cancer Med. 2015; 4: 1933-1947
        • Harvie M.N.
        • Sims A.H.
        • Pegington M.
        • et al.
        Intermittent energy restriction induces changes in breast gene expression and systemic metabolism.
        Breast Cancer Res. 2016; 18: 57
        • Safdie F.M.
        • Dorff T.
        • Quinn D.
        • et al.
        Fasting and cancer treatment in humans: A case series report.
        Aging (Albany NY). 2009; 1: 988-1007
        • de Groot S.
        • Vreeswijk M.P.
        • Welters M.J.
        • et al.
        The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study.
        BMC Cancer. 2015; 15: 652
        • Shai I.
        • Schwarzfuchs D.
        • Henkin Y.
        • et al.
        Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.
        N Engl J Med. 2008; 359: 229-241
        • Prentice R.L.
        • Thomson C.A.
        • Caan B.
        • et al.
        Low-fat dietary pattern and cancer incidence in the Women's Health Initiative Dietary Modification Randomized Controlled Trial.
        J Natl Cancer Inst. 2007; 99: 1534-1543
        • Thomson C.A.
        • Van Horn L.
        • Caan B.J.
        • et al.
        Cancer incidence and mortality during the intervention and postintervention periods of the Women's Health Initiative dietary modification trial.
        Cancer Epidemiol Biomarkers Prev. 2014; 23: 2924-2935
        • Prentice R.L.
        • Caan B.
        • Chlebowski R.T.
        • et al.
        Low-fat dietary pattern and risk of invasive breast cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial.
        JAMA. 2006; 295: 629-642
        • Beresford S.A.
        • Johnson K.C.
        • Ritenbaugh C.
        • et al.
        Low-fat dietary pattern and risk of colorectal cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial.
        JAMA. 2006; 295: 643-654
        • Gamba C.S.
        • Stefanick M.L.
        • Shikany J.M.
        • et al.
        Low-fat diet and skin cancer risk: The women's health initiative randomized controlled dietary modification trial.
        Cancer Epidemiol Biomarkers Prev. 2013; 22: 1509-1519
        • Martin L.J.
        • Li Q.
        • Melnichouk O.
        • et al.
        A randomized trial of dietary intervention for breast cancer prevention.
        Cancer Res. 2011; 71: 123-133
        • Schatzkin A.
        • Lanza E.
        • Corle D.
        • et al.
        Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group.
        N Engl J Med. 2000; 342: 1149-1155
        • Lanza E.
        • Yu B.
        • Murphy G.
        • et al.
        The polyp prevention trial continued follow-up study: No effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence eight years after randomization.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 1745-1752
        • Sansbury L.B.
        • Wanke K.
        • Albert P.S.
        • et al.
        The effect of strict adherence to a high-fiber, high-fruit and -vegetable, and low-fat eating pattern on adenoma recurrence.
        Am J Epidemiol. 2009; 170: 576-584
        • Chlebowski R.T.
        • Aragaki A.K.
        • Anderson G.L.
        • et al.
        Low-fat dietary pattern and breast cancer mortality in the Women's Health Initiative randomized controlled trial.
        J Clin Oncol. 2017; (JCO2016720326)
        • Chlebowski R.T.
        • Blackburn G.L.
        • Thomson C.A.
        • et al.
        Dietary fat reduction and breast cancer outcome: Interim efficacy results from the Women's Intervention Nutrition Study.
        J Natl Cancer Inst. 2006; 98: 1767-1776
        • Pierce J.P.
        • Natarajan L.
        • Caan B.J.
        • et al.
        Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women's Healthy Eating and Living (WHEL) randomized trial.
        JAMA. 2007; 298: 289-298
        • Gold E.B.
        • Pierce J.P.
        • Natarajan L.
        • et al.
        Dietary pattern influences breast cancer prognosis in women without hot flashes: The Women's Healthy Eating and Living trial.
        J Clin Oncol. 2009; 27: 352-359
        • Aronson W.J.
        • Kobayashi N.
        • Barnard R.J.
        • et al.
        Phase II prospective randomized trial of a low-fat diet with fish oil supplementation in men undergoing radical prostatectomy.
        Cancer Prev Res (Phila). 2011; 4: 2062-2071
        • Demark-Wahnefried W.
        • Polascik T.J.
        • George S.L.
        • et al.
        Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 3577-3587
        • Paoli A.
        • Rubini A.
        • Volek J.S.
        • Grimaldi K.A.
        Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets.
        Eur J Clin Nutr. 2013; 67: 789-796
        • Dashti H.M.
        • Mathew T.C.
        • Hussein T.
        • et al.
        Long-term effects of a ketogenic diet in obese patients.
        Exp Clin Cardiol. 2004; 9: 200-205
        • Fu S.P.
        • Li S.N.
        • Wang J.F.
        • et al.
        BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-kappaB activation.
        Mediators Inflamm. 2014; 2014: 983401
        • Woolf E.C.
        • Curley K.L.
        • Liu Q.
        • et al.
        The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model.
        PLoS One. 2015; 10: e0130357
        • Goldberg E.L.
        • Asher J.L.
        • Molony R.D.
        • et al.
        Beta-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares.
        Cell Rep. 2017; 18: 2077-2087
        • Merra G.
        • Gratteri S.
        • De Lorenzo A.
        • et al.
        Effects of very-low-calorie diet on body composition, metabolic state, and genes expression: A randomized double-blind placebo-controlled trial.
        Eur Rev Med Pharmacol Sci. 2017; 21: 329-345
        • Badman M.K.
        • Kennedy A.R.
        • Adams A.C.
        • Pissios P.
        • Maratos-Flier E.
        A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss.
        Am J Physiol Endocrinol Metab. 2009; 297: E1197-E1204
        • Nandivada P.
        • Fell G.L.
        • Pan A.H.
        • et al.
        Eucaloric ketogenic diet reduces hypoglycemia and inflammation in mice with endotoxemia.
        Lipids. 2016; 51: 703-714
        • Tisdale M.J.
        • Brennan R.A.
        • Fearon K.C.
        Reduction of weight loss and tumour size in a cachexia model by a high fat diet.
        Br J Cancer. 1987; 56: 39-43
        • Allen B.G.
        • Bhatia S.K.
        • Anderson C.M.
        • et al.
        Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism.
        Redox Biol. 2014; 2: 963-970
        • Branco A.F.
        • Ferreira A.
        • Simoes R.F.
        • et al.
        Ketogenic diets: From cancer to mitochondrial diseases and beyond.
        Eur J Clin Invest. 2016; 46: 285-298
        • Ellenbroek J.H.
        • van Dijck L.
        • Tons H.A.
        • et al.
        Long-term ketogenic diet causes glucose intolerance and reduced beta- and alpha-cell mass but no weight loss in mice.
        Am J Physiol Endocrinol Metab. 2014; 306: E552-E558

      Biography

      L. A. Smith is a graduate student, Department of Nutrition, University of North Carolina at Chapel Hill.

      Biography

      C. H. O’Flanagan is a postdoctoral fellow, Department of Nutrition, University of North Carolina at Chapel Hill.

      Biography

      L. W. Bowers is a postdoctoral fellow, Department of Nutrition, University of North Carolina at Chapel Hill.

      Biography

      E. H. Allott is a research assistant professor, Department of Nutrition, University of North Carolina at Chapel Hill.

      Biography

      S. D. Hursting is a professor, Department of Nutrition, University of North Carolina at Chapel Hill.