NOTICE: We are experiencing technical issues with Academy members trying to log into the JAND site using Academy member login credentials. We are working to resolve the issue as soon as possible. Alternatively, if you are an Academy member, you can access the JAND site by registering for an Elsevier account and claiming access using the links at the top of the JAND site. Email us at [email protected] for assistance. Thanks for your patience!

Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer

Published:September 12, 2017DOI:https://doi.org/10.1016/j.jand.2017.07.005

      Abstract

      Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hine R.J.
        • Srivastava S.
        • Milner J.A.
        • Ross S.A.
        Nutritional links to plausible mechanisms underlying pancreatic cancer: A conference report.
        Pancreas. 2003; 27: 356-366
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer Statistics, 2017.
        CA Cancer J Clin. 2017; 67: 7-30
        • Xiao A.Y.
        • Tan M.L.Y.
        • Wu L.M.
        • et al.
        Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies.
        Lancet Gastroenterol Hepatol. 2016; 1: 45-55
        • Rahib L.
        • Smith B.D.
        • Aizenberg R.
        • Rosenzweig A.B.
        • Fleshman J.M.
        • Matrisian L.M.
        Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States.
        Cancer Res. 2014; 74: 2913-2921
        • Meyskens Jr., F.L.
        • Mukhtar H.
        • Rock C.L.
        • et al.
        Cancer prevention: Obstacles, challenges and the road ahead.
        J Natl Cancer Inst. 2016; 108
        • Kensler T.W.
        • Spira A.
        • Garber J.E.
        • et al.
        Transforming cancer prevention through precision medicine and immune-oncology.
        Cancer Prev Res (Phila). 2016; 9: 2-10
        • Albini A.
        • DeCensi A.
        • Cavalli F.
        • Costa A.
        Cancer prevention and interception: A new era for chemopreventive approaches.
        Clin Cancer Res. 2016; 22: 4322-4327
        • Umar A.
        • Dunn B.K.
        • Greenwald P.
        Future directions in cancer prevention.
        Nat Rev Cancer. 2012; 12: 835-848
        • Miller M.S.
        • Allen P.
        • Brentnall T.A.
        • et al.
        Pancreatic cancer chemoprevention translational workshop: Meeting report.
        Pancreas. 2016; 45: 1080-1091
        • Jansen R.J.
        • Tan X.L.
        • Petersen G.M.
        Gene-by-environment interactions in pancreatic cancer: Implications for prevention.
        Yale J Biol Med. 2015; 88: 115-126
        • Andersen D.K.
        • Andren-Sandberg A.
        • Duell E.J.
        • et al.
        Pancreatitis-diabetes-pancreatic cancer: Summary of an NIDDK-NCI workshop.
        Pancreas. 2013; 42: 1227-1237
        • Maisonneuve P.
        • Lowenfels A.B.
        Risk factors for pancreatic cancer: A summary review of meta-analytical studies.
        Int J Epidemiol. 2015; 44: 186-198
        • Edderkaoui M.
        • Eibl G.
        Risk factors for pancreatic cancer: Underlying mechanisms and potential targets.
        Front Physiol. 2014; 5: 490
        • Sah R.P.
        • Nagpal S.J.
        • Mukhopadhyay D.
        • Chari S.T.
        New insights into pancreatic cancer-induced paraneoplastic diabetes.
        Nat Rev Gastroenterol Hepatol. 2013; 10: 423-433
        • Hart P.A.
        • Bellin M.D.
        • Andersen D.K.
        • et al.
        Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer.
        Lancet Gastroenterol Hepatol. 2016; 1: 226-237
        • Cui Y.
        • Andersen D.K.
        Diabetes and pancreatic cancer.
        Endocr Relat Cancer. 2012; 19: F9-F26
        • Fisher W.E.
        Diabetes: Risk factor for the development of pancreatic cancer or manifestation of the disease?.
        World J Surg. 2001; 25: 503-508
        • Genkinger J.M.
        • Kitahara C.M.
        • Bernstein L.
        • et al.
        Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies.
        Ann Oncol. 2015; 26: 2257-2266
        • Gapstur S.M.
        • Gann P.H.
        • Lowe W.
        • Liu K.
        • Colangelo L.
        • Dyer A.
        Abnormal glucose metabolism and pancreatic cancer mortality.
        JAMA. 2000; 283: 2552-2558
        • Michaud D.S.
        • Giovannucci E.
        • Willett W.C.
        • Colditz G.A.
        • Stampfer M.J.
        • Fuchs C.S.
        Physical activity, obesity, height, and the risk of pancreatic cancer.
        JAMA. 2001; 286: 921-929
        • Calle E.E.
        • Rodriguez C.
        • Walker-Thurmond K.
        • Thun M.J.
        Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.
        N Engl J Med. 2003; 348: 1625-1638
        • Johansen D.
        • Stocks T.
        • Jonsson H.
        • et al.
        Metabolic factors and the risk of pancreatic cancer: A prospective analysis of almost 580,000 men and women in the Metabolic Syndrome and Cancer Project.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 2307-2317
        • Arslan A.A.
        • Helzlsouer K.J.
        • Kooperberg C.
        • et al.
        Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan).
        Arch Intern Med. 2010; 170: 791-802
        • Alsamarrai A.
        • Das S.L.
        • Windsor J.A.
        • Petrov M.S.
        Factors that affect risk for pancreatic disease in the general population: A systematic review and meta-analysis of prospective cohort studies.
        Clin Gastroenterol Hepatol. 2014; 12 (quiz e1103): 1635-1644.e1635
        • Dixon J.L.
        • Copeland L.A.
        • Zeber J.E.
        • et al.
        Association between diabetes and esophageal cancer, independent of obesity, in the United States Veterans Affairs population.
        Dis Esophagus. 2016; 29: 747-751
        • Aggarwal G.
        • Kamada P.
        • Chari S.T.
        Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers.
        Pancreas. 2013; 42: 198-201
        • Yang W.S.
        • Va P.
        • Bray F.
        • et al.
        The role of pre-existing diabetes mellitus on hepatocellular carcinoma occurrence and prognosis: A meta-analysis of prospective cohort studies.
        PLoS ONE. 2011; 6: e27326
        • Teucher B.
        • Rohrmann S.
        • Kaaks R.
        Obesity: Focus on all-cause mortality and cancer.
        Maturitas. 2010; 65: 112-116
        • Sjostrom L.
        • Narbro K.
        • Sjostrom C.D.
        • et al.
        Effects of bariatric surgery on mortality in Swedish obese subjects.
        N Engl J Med. 2007; 357: 741-752
        • Birks S.
        • Peeters A.
        • Backholer K.
        • O'Brien P.
        • Brown W.
        A systematic review of the impact of weight loss on cancer incidence and mortality.
        Obes Rev. 2012; 13: 868-891
        • Adams T.D.
        • Stroup A.M.
        • Gress R.E.
        • et al.
        Cancer incidence and mortality after gastric bypass surgery.
        Obesity (Silver Spring). 2009; 17: 796-802
        • Christou N.V.
        • Lieberman M.
        • Sampalis F.
        • Sampalis J.S.
        Bariatric surgery reduces cancer risk in morbidly obese patients.
        Surg Obes Relat Dis. 2008; 4: 691-695
        • Sjostrom L.
        • Gummesson A.
        • Sjostrom C.D.
        • et al.
        Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): A prospective, controlled intervention trial.
        Lancet Oncol. 2009; 10: 653-662
        • Jiao L.
        • Berrington de Gonzalez A.
        • Hartge P.
        • et al.
        Body mass index, effect modifiers, and risk of pancreatic cancer: A pooled study of seven prospective cohorts.
        Cancer Causes Control. 2010; 21: 1305-1314
        • Stolzenberg-Solomon R.Z.
        • Graubard B.I.
        • Chari S.
        • et al.
        Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers.
        JAMA. 2005; 294: 2872-2878
        • Calle E.E.
        • Kaaks R.
        Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms.
        Nat Rev Cancer. 2004; 4: 579-591
        • Butler A.E.
        • Galasso R.
        • Matveyenko A.
        • Rizza R.A.
        • Dry S.
        • Butler P.C.
        Pancreatic duct replication is increased with obesity and type 2 diabetes in humans.
        Diabetologia. 2010; 53: 21-26
        • Bracci P.M.
        Obesity and pancreatic cancer: Overview of epidemiologic evidence and biologic mechanisms.
        Mol Carcinog. 2012; 51: 53-63
        • Allott E.H.
        • Hursting S.D.
        Obesity and cancer: Mechanistic insights from transdisciplinary studies.
        Endocr Relat Cancer. 2015; 22: R365-R386
        • De Pergola G.
        • Silvestris F.
        Obesity as a major risk factor for cancer.
        J Obes. 2013; 2013: 291546
        • Deng T.
        • Lyon C.J.
        • Bergin S.
        • Caligiuri M.A.
        • Hsueh W.A.
        Obesity, inflammation, and cancer.
        Annu Rev Pathol. 2016; 11: 421-449
        • Goodwin P.J.
        • Stambolic V.
        Impact of the obesity epidemic on cancer.
        Annu Rev Med. 2015; 66: 281-296
        • Park J.
        • Morley T.S.
        • Kim M.
        • Clegg D.J.
        • Scherer P.E.
        Obesity and cancer—mechanisms underlying tumour progression and recurrence.
        Nat Rev Endocrinol. 2014; 10: 455-465
        • Preziosi G.
        • Oben J.A.
        • Fusai G.
        Obesity and pancreatic cancer.
        Surg Oncol. 2014; 23: 61-71
        • Renehan A.G.
        • Zwahlen M.
        • Egger M.
        Adiposity and cancer risk: New mechanistic insights from epidemiology.
        Nat Rev Cancer. 2015; 15: 484-498
        • Rozengurt E.
        Mechanistic target of rapamycin (mTOR): a point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells.
        Front Physiol. 2014; 5: 357
        • Ireland L.
        • Santos A.
        • Ahmed M.S.
        • et al.
        Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors.
        Cancer Res. 2016; 76: 6851-6863
        • Jang W.I.
        • Kim M.S.
        • Kang S.H.
        • et al.
        Association between metformin use and mortality in patients with type 2 diabetes mellitus and localized resectable pancreatic cancer: A nationwide population-based study in Korea.
        Oncotarget. 2017; 8: 9587-9596
        • Duan W.
        • Chen K.
        • Jiang Z.
        • et al.
        Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression.
        Cancer Lett. 2017; 385: 225-233
        • Elgogary A.
        • Xu Q.
        • Poore B.
        • et al.
        Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer.
        Proc Natl Acad Sci U S A. 2016; 113: E5328-E5336
        • Amin S.
        • Mhango G.
        • Lin J.
        • et al.
        Metformin improves survival in patients with pancreatic ductal adenocarcinoma and pre-existing diabetes: A propensity score analysis.
        Am J Gastroenterol. 2016; 111: 1350-1357
        • Ming M.
        • Sinnett-Smith J.
        • Wang J.
        • et al.
        Dose-dependent AMPK-dependent and independent mechanisms of berberine and metformin inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.
        PLoS ONE. 2014; 9: e114573
        • Gong J.
        • Robbins L.A.
        • Lugea A.
        • Waldron R.T.
        • Jeon C.Y.
        • Pandol S.J.
        Diabetes, pancreatic cancer, and metformin therapy.
        Front Physiol. 2014; 5: 426
        • Kisfalvi K.
        • Moro A.
        • Sinnett-Smith J.
        • Eibl G.
        • Rozengurt E.
        Metformin inhibits the growth of human pancreatic cancer xenografts.
        Pancreas. 2013; 42: 781-785
        • Cifarelli V.
        • Lashinger L.M.
        • Devlin K.L.
        • et al.
        Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms.
        Diabetes. 2015; 64: 1632-1642
        • Kordes S.
        • Pollak M.N.
        • Zwinderman A.H.
        • et al.
        Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial.
        Lancet Oncol. 2015; 16: 839-847
        • Reni M.
        • Dugnani E.
        • Cereda S.
        • et al.
        (Ir)relevance of metformin treatment in patients with metastatic pancreatic cancer: An open-label, randomized phase II trial.
        Clin Cancer Res. 2016; 22: 1076-1085
        • Chaiteerakij R.
        • Petersen G.M.
        • Bamlet W.R.
        • et al.
        Metformin use and survival of patients with pancreatic cancer: A cautionary lesson.
        J Clin Oncol. 2016; 34: 1898-1904
        • Yang Y.X.
        • Rustgi A.K.
        Impact of metformin on advanced pancreatic cancer survival: Too little, too late?.
        Clin Cancer Res. 2016; 22: 1031-1033
        • Bronte V.
        • Tortora G.
        Adipocytes and neutrophils give a helping hand to pancreatic cancers.
        Cancer Discov. 2016; 6: 821-823
        • Harvey A.E.
        • Lashinger L.M.
        • Hursting S.D.
        The growing challenge of obesity and cancer: An inflammatory issue.
        Ann N Y Acad Sci. 2011; 1229: 45-52
        • Greer J.B.
        • Whitcomb D.C.
        Inflammation and pancreatic cancer: An evidence-based review.
        Curr Opin Pharmacol. 2009; 9: 411-418
        • Algul H.
        • Treiber M.
        • Lesina M.
        • Schmid R.M.
        Mechanisms of disease: Chronic inflammation and cancer in the pancreas—a potential role for pancreatic stellate cells?.
        Nat Clin Pract Gastroenterol Hepatol. 2007; 4: 454-462
        • Swidnicka-Siergiejko A.K.
        • Gomez-Chou S.B.
        • Cruz-Monserrate Z.
        • et al.
        Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53.
        Oncogene. 2017; 36: 3149-3158
        • Guerra C.
        • Schuhmacher A.J.
        • Canamero M.
        • et al.
        Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice.
        Cancer Cell. 2007; 11: 291-302
        • Eibl G.
        • Reber H.A.
        • Wente M.N.
        • Hines O.J.
        The selective cyclooxygenase-2 inhibitor nimesulide induces apoptosis in pancreatic cancer cells independent of COX-2.
        Pancreas. 2003; 26: 33-41
        • Mace T.A.
        • Shakya R.
        • Pitarresi J.R.
        • et al.
        IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
        Gut. 2016 Oct 21; (Epub ahead of print)
        • Mohammed A.
        • Janakiram N.B.
        • Madka V.
        • et al.
        Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression.
        Oncotarget. 2015; 6: 15524-15539
        • Tan X.L.
        • Reid Lombardo K.M.
        • Bamlet W.R.
        • et al.
        Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: A clinic-based case-control study.
        Cancer Prev Res (Phila). 2011; 4: 1835-1841
        • Risch H.A.
        • Lu L.
        • Streicher S.A.
        • et al.
        Aspirin use and reduced risk of pancreatic cancer.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 68-74
        • Zhang Y.P.
        • Wan Y.D.
        • Sun Y.L.
        • Li J.
        • Zhu R.T.
        Aspirin might reduce the incidence of pancreatic cancer: A meta-analysis of observational studies.
        Sci Rep. 2015; 5: 15460
        • Dawson D.W.
        • Hertzer K.
        • Moro A.
        • et al.
        High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model.
        Cancer Prev Res (Phila). 2013; 6: 1064-1073
        • Incio J.
        • Tam J.
        • Rahbari N.N.
        • et al.
        PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity.
        Clin Cancer Res. 2016; 22: 2993-3004
        • Philip B.
        • Roland C.L.
        • Daniluk J.
        • et al.
        A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.
        Gastroenterology. 2013; 145: 1449-1458
        • Harvey A.E.
        • Lashinger L.M.
        • Hays D.
        • et al.
        Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-kappaB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner.
        PLoS ONE. 2014; 9: e94151
        • Lashinger L.M.
        • Harrison L.M.
        • Rasmussen A.J.
        • et al.
        Dietary energy balance modulation of Kras- and Ink4a/Arf+/–driven pancreatic cancer: The role of insulin-like growth factor-I.
        Cancer Prev Res (Phila). 2013; 6: 1046-1055
        • Chang S.C.
        • Yang W.V.
        Hyperglycemia, tumorigenesis, and chronic inflammation.
        Crit Rev Oncol Hematol. 2016; 108: 146-153
        • Wang L.
        • Bai Y.Y.
        • Yang Y.
        • et al.
        Diabetes mellitus stimulates pancreatic cancer growth and epithelial-mesenchymal transition-mediated metastasis via a p38 MAPK pathway.
        Oncotarget. 2016; 7: 38539-38550
        • Chang H.H.
        • Young S.H.
        • Sinnett-Smith J.
        • et al.
        Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1.
        Am J Physiol Cell Physiol. 2015; 309: C639-C649
        • Polvani S.
        • Tarocchi M.
        • Tempesti S.
        • Bencini L.
        • Galli A.
        Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer.
        World J Gastroenterol. 2016; 22: 2441-2459
        • Hidaka A.
        • Shimazu T.
        • Sawada N.
        • et al.
        Fish, n-3 PUFA consumption, and pancreatic cancer risk in Japanese: A large, population-based, prospective cohort study.
        Am J Clin Nutr. 2015; 102: 1490-1497
        • Yu M.
        • Liu H.
        • Duan Y.
        • Zhang D.
        • Li S.
        • Wang F.
        Four types of fatty acids exert differential impact on pancreatic cancer growth.
        Cancer Lett. 2015; 360: 187-194
        • Ma Y.J.
        • Yu J.
        • Xiao J.
        • Cao B.W.
        The consumption of omega-3 polyunsaturated fatty acids improves clinical outcomes and prognosis in pancreatic cancer patients: A systematic evaluation.
        Nutr Cancer. 2015; 67: 112-118
        • Mohammed A.
        • Janakiram N.B.
        • Brewer M.
        • et al.
        Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice.
        Neoplasia. 2012; 14: 1249-1259
        • He K.
        • Xun P.
        • Brasky T.M.
        • Gammon M.D.
        • Stevens J.
        • White E.
        Types of fish consumed and fish preparation methods in relation to pancreatic cancer incidence: The VITAL Cohort Study.
        Am J Epidemiol. 2013; 177: 152-160
        • Funahashi H.
        • Satake M.
        • Hasan S.
        • et al.
        Opposing effects of n-6 and n-3 polyunsaturated fatty acids on pancreatic cancer growth.
        Pancreas. 2008; 36: 353-362
        • MacLean C.H.
        • Newberry S.J.
        • Mojica W.A.
        • et al.
        Effects of omega-3 fatty acids on cancer risk: A systematic review.
        JAMA. 2006; 295: 403-415
      1. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity, and the Prevention of Pancreatic Cancer. 2012. http://www.wcrf.org/int/research-we-fund/continuous-update-project-findings-reports/pancreatic-cancer. Accessed August 7, 2017.

        • Simopoulos A.P.
        An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity.
        Nutrients. 2016; 8: 128
        • Ellulu M.S.
        • Khaza'ai H.
        • Abed Y.
        • Rahmat A.
        • Ismail P.
        • Ranneh Y.
        Role of fish oil in human health and possible mechanism to reduce the inflammation.
        Inflammopharmacology. 2015; 23: 79-89
        • Nobili V.
        • Alisi A.
        • Musso G.
        • Scorletti E.
        • Calder P.C.
        • Byrne C.D.
        Omega-3 fatty acids: Mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD.
        Crit Rev Clin Lab Sci. 2016; 53: 106-120
        • Martinez-Fernandez L.
        • Laiglesia L.M.
        • Huerta A.E.
        • Martinez J.A.
        • Moreno-Aliaga M.J.
        Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome.
        Prostaglandins Other Lipid Mediat. 2015; 121: 24-41
        • Monteiro J.
        • Leslie M.
        • Moghadasian M.H.
        • Arendt B.M.
        • Allard J.P.
        • Ma D.W.
        The role of n-6 and n-3 polyunsaturated fatty acids in the manifestation of the metabolic syndrome in cardiovascular disease and non-alcoholic fatty liver disease.
        Food Funct. 2014; 5: 426-435
        • Ulven T.
        • Christiansen E.
        Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120.
        Annu Rev Nutr. 2015; 35: 239-263
        • Flock M.R.
        • Rogers C.J.
        • Prabhu K.S.
        • Kris-Etherton P.M.
        Immunometabolic role of long-chain omega-3 fatty acids in obesity-induced inflammation.
        Diabetes Metab Res Rev. 2013; 29: 431-445
        • Titos E.
        • Claria J.
        Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.
        Prostaglandins Other Lipid Mediat. 2013; 107: 77-84
        • Oliver E.
        • McGillicuddy F.
        • Phillips C.
        • Toomey S.
        • Roche H.M.
        The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA.
        Proc Nutr Soc. 2010; 69: 232-243
        • Masoodi M.
        • Kuda O.
        • Rossmeisl M.
        • Flachs P.
        • Kopecky J.
        Lipid signaling in adipose tissue: Connecting inflammation and metabolism.
        Biochim Biophys Acta. 2015; 1851: 503-518
        • Waghray M.
        • Yalamanchili M.
        • di Magliano M.P.
        • Simeone D.M.
        Deciphering the role of stroma in pancreatic cancer.
        Curr Opin Gastroenterol. 2013; 29: 537-543
        • Neesse A.
        • Algul H.
        • Tuveson D.A.
        • Gress T.M.
        Stromal biology and therapy in pancreatic cancer: a changing paradigm.
        Gut. 2015; 64: 1476-1484
        • Incio J.
        • Liu H.
        • Suboj P.
        • et al.
        Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy.
        Cancer Discov. 2016; 6: 852-869
        • Yang J.
        • Waldron R.T.
        • Su H.Y.
        • et al.
        Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells.
        Am J Physiol Gastrointest Liver Physiol. 2016; 311: G675-G687
        • Font-Burgada J.
        • Sun B.
        • Karin M.
        Obesity and cancer: The oil that feeds the flame.
        Cell Metab. 2016; 23: 48-62
        • Plovier H.
        • Everard A.
        • Druart C.
        • et al.
        A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.
        Nat Med. 2017; 23: 107-113
        • Sze M.A.
        • Schloss P.D.
        Looking for a signal in the noise: Revisiting obesity and the microbiome.
        MBio. 2016; 7
        • Kusminski C.M.
        • Bickel P.E.
        • Scherer P.E.
        Targeting adipose tissue in the treatment of obesity-associated diabetes.
        Nat Rev Drug Discov. 2016; 15: 639-660
        • Singh R.G.
        • Yoon H.D.
        • Wu L.M.
        • Lu J.
        • Plank L.D.
        • Petrov M.S.
        Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression.
        Metabolism. 2017; 69: 1-13
        • Singh R.G.
        • Pendharkar S.A.
        • Gillies N.A.
        • Miranda-Soberanis V.
        • Plank L.D.
        • Petrov M.S.
        Associations between circulating levels of adipocytokines and abdominal adiposity in patients after acute pancreatitis.
        Clin Exp Med. 2017 Feb 6; (Epub ahead of print)
        • Castoldi A.
        • Naffah de Souza C.
        • Camara N.O.
        • Moraes-Vieira P.M.
        The macrophage switch in obesity development.
        Front Immunol. 2015; 6: 637
        • Dam V.
        • Sikder T.
        • Santosa S.
        From neutrophils to macrophages: Differences in regional adipose tissue depots.
        Obes Rev. 2016; 17: 1-17
        • Wensveen F.M.
        • Valentic S.
        • Sestan M.
        Turk Wensveen T, Polic B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation.
        Eur J Immunol. 2015; 45: 2446-2456
        • Bai Y.
        • Sun Q.
        Macrophage recruitment in obese adipose tissue.
        Obes Rev. 2015; 16: 127-136
        • Hill A.A.
        • Reid Bolus W.
        • Hasty A.H.
        A decade of progress in adipose tissue macrophage biology.
        Immunol Rev. 2014; 262: 134-152
        • Vieira-Potter V.J.
        Inflammation and macrophage modulation in adipose tissues.
        Cell Microbiol. 2014; 16: 1484-1492
        • Boutens L.
        • Stienstra R.
        Adipose tissue macrophages: Going off track during obesity.
        Diabetologia. 2016; 59: 879-894
        • Kim J.
        • Chung K.
        • Choi C.
        • et al.
        Silencing CCR2 in macrophages alleviates adipose tissue inflammation and the associated metabolic syndrome in dietary obese mice.
        Mol Ther Nucleic Acids. 2016; 5: e280
        • Romeo G.R.
        • Lee J.
        • Shoelson S.E.
        Metabolic syndrome, insulin resistance, and roles of inflammation—Mechanisms and therapeutic targets.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1771-1776
        • Gucalp A.
        • Iyengar N.M.
        • Hudis C.A.
        • Dannenberg A.J.
        Targeting obesity-related adipose tissue dysfunction to prevent cancer development and progression.
        Semin Oncol. 2016; 43: 154-160
        • Conroy M.J.
        • Dunne M.R.
        • Donohoe C.L.
        • Reynolds J.V.
        Obesity-associated cancer: An immunological perspective.
        Proc Nutr Soc. 2016; 75: 125-138
        • Hertzer K.M.
        • Xu M.
        • Moro A.
        • et al.
        Robust early inflammation of the peripancreatic visceral adipose tissue during diet-induced obesity in the KrasG12D model of pancreatic cancer.
        Pancreas. 2016; 45: 458-465
        • Vongsuvanh R.
        • George J.
        • Qiao L.
        • van der Poorten D.
        Visceral adiposity in gastrointestinal and hepatic carcinogenesis.
        Cancer Lett. 2013; 330: 1-10
        • Kwee T.C.
        • Kwee R.M.
        Abdominal adiposity and risk of pancreatic cancer.
        Pancreas. 2007; 35: 285-286
        • Aune D.
        • Greenwood D.C.
        • Chan D.S.
        • et al.
        Body mass index, abdominal fatness and pancreatic cancer risk: A systematic review and non-linear dose-response meta-analysis of prospective studies.
        Ann Oncol. 2012; 23: 843-852
        • Lee M.J.
        • Wu Y.
        • Fried S.K.
        Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications.
        Mol Aspects Med. 2013; 34: 1-11
        • Muller M.J.
        • Lagerpusch M.
        • Enderle J.
        • Schautz B.
        • Heller M.
        • Bosy-Westphal A.
        Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome.
        Obes Rev. 2012; 13: 6-13
        • Walker G.E.
        • Marzullo P.
        • Ricotti R.
        • Bona G.
        • Prodam F.
        The pathophysiology of abdominal adipose tissue depots in health and disease.
        Horm Mol Biol Clin Investig. 2014; 19: 57-74
        • Babic A.
        • Bao Y.
        • Qian Z.R.
        • et al.
        Pancreatic cancer risk associated with prediagnostic plasma levels of leptin and leptin receptor genetic polymorphisms.
        Cancer Res. 2016; 76: 7160-7167
        • Stolzenberg-Solomon R.Z.
        • Newton C.C.
        • Silverman D.T.
        • et al.
        Circulating leptin and risk of pancreatic cancer: A pooled analysis from 3 cohorts.
        Am J Epidemiol. 2015; 182: 187-197
        • Lanza-Jacoby S.
        • Yan G.
        • Radice G.
        • LePhong C.
        • Baliff J.
        • Hess R.
        Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer.
        Exp Biol Med (Maywood). 2013; 238: 787-797
        • Harbuzariu A.
        • Rampoldi A.
        • Daley-Brown D.S.
        • et al.
        Leptin-Notch signaling axis is involved in pancreatic cancer progression.
        Oncotarget. 2017; 8: 7740-7752
        • Fan Y.
        • Gan Y.
        • Shen Y.
        • et al.
        Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production.
        Oncotarget. 2015; 6: 16120-16134
        • Mendonsa A.M.
        • Chalfant M.C.
        • Gorden L.D.
        • VanSaun M.N.
        Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.
        PLoS ONE. 2015; 10: e0126686
        • Stolzenberg-Solomon R.Z.
        • Weinstein S.
        • Pollak M.
        • et al.
        Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers.
        Am J Epidemiol. 2008; 168: 1047-1055
        • Nogueira L.M.
        • Newton C.C.
        • Pollak M.N.
        • et al.
        Serum C-peptide, total and high molecular weight adiponectin, and pancreatic cancer: Do associations differ by smoking?.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 914-922
        • Bao Y.
        • Giovannucci E.L.
        • Kraft P.
        • et al.
        A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts.
        J Natl Cancer Inst. 2013; 105: 95-103
        • Alempijevic T.
        • Dragasevic S.
        • Zec S.
        • Popovic D.
        • Milosavljevic T.
        Non-alcoholic fatty pancreas disease.
        Postgrad Med J. 2017; 93: 226-230
        • Carter R.
        • Mouralidarane A.
        • Soeda J.
        • et al.
        Non-alcoholic fatty pancreas disease pathogenesis: A role for developmental programming and altered circadian rhythms.
        PLoS ONE. 2014; 9: e89505
        • Wu W.C.
        • Wang C.Y.
        Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: Case-control retrospective study.
        Cardiovasc Diabetol. 2013; 12: 77
        • Gotoh K.
        • Inoue M.
        • Shiraishi K.
        • et al.
        Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease.
        PLoS ONE. 2012; 7: e53154
        • Fraulob J.C.
        • Ogg-Diamantino R.
        • Fernandes-Santos C.
        • Aguila M.B.
        • Mandarim-de-Lacerda C.A.
        A mouse model of metabolic syndrome: Insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet.
        J Clin Biochem Nutr. 2010; 46: 212-223
        • Grippo P.J.
        • Fitchev P.S.
        • Bentrem D.J.
        • et al.
        Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice.
        Gut. 2012; 61: 1454-1464
        • Aune D.
        • Chan D.S.
        • Vieira A.R.
        • et al.
        Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: A systematic review and meta-analysis of cohort studies.
        Ann Oncol. 2012; 23: 2536-2546
        • Mueller N.T.
        • Odegaard A.
        • Anderson K.
        • et al.
        Soft drink and juice consumption and risk of pancreatic cancer: The Singapore Chinese Health Study.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 447-455
        • Larsson S.C.
        • Bergkvist L.
        • Wolk A.
        Consumption of sugar and sugar-sweetened foods and the risk of pancreatic cancer in a prospective study.
        Am J Clin Nutr. 2006; 84: 1171-1176
        • Bao Y.
        • Stolzenberg-Solomon R.
        • Jiao L.
        • et al.
        Added sugar and sugar-sweetened foods and beverages and the risk of pancreatic cancer in the National Institutes of Health-AARP Diet and Health Study.
        Am J Clin Nutr. 2008; 88: 431-440
        • Jiao L.
        • Flood A.
        • Subar A.F.
        • Hollenbeck A.R.
        • Schatzkin A.
        • Stolzenberg-Solomon R.
        Glycemic index, carbohydrates, glycemic load, and the risk of pancreatic cancer in a prospective cohort study.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 1144-1151
        • Patel A.V.
        • McCullough M.L.
        • Pavluck A.L.
        • Jacobs E.J.
        • Thun M.J.
        • Calle E.E.
        Glycemic load, glycemic index, and carbohydrate intake in relation to pancreatic cancer risk in a large US cohort.
        Cancer Causes Control. 2007; 18: 287-294
        • Thiebaut A.C.
        • Jiao L.
        • Silverman D.T.
        • et al.
        Dietary fatty acids and pancreatic cancer in the NIH-AARP diet and health study.
        J Natl Cancer Inst. 2009; 101: 1001-1011
        • Stolzenberg-Solomon R.Z.
        • Cross A.J.
        • Silverman D.T.
        • et al.
        Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 2664-2675
        • Larsson S.C.
        • Hakansson N.
        • Naslund I.
        • Bergkvist L.
        • Wolk A.
        Fruit and vegetable consumption in relation to pancreatic cancer risk: A prospective study.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 301-305
        • Jeurnink S.M.
        • Ros M.M.
        • Leenders M.
        • et al.
        Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: A nested case-control study: Plasma micronutrients and pancreatic cancer risk.
        Int J Cancer. 2015; 136: E665-E676
        • Pavlova N.N.
        • Thompson C.B.
        The emerging hallmarks of cancer metabolism.
        Cell Metab. 2016; 23: 27-47
        • Lutz T.A.
        • Woods S.C.
        Overview of animal models of obesity.
        Curr Protoc Pharmacol. 2012; (Chapter 5:Unit5 61)
        • Tschop M.
        • Heiman M.L.
        Rodent obesity models: An overview.
        Exp Clin Endocrinol Diabetes. 2001; 109: 307-319
        • Wang C.Y.
        • Liao J.K.
        A mouse model of diet-induced obesity and insulin resistance.
        Methods Mol Biol. 2012; 821: 421-433
        • Hursting S.D.
        Obesity, energy balance, and cancer: A mechanistic perspective.
        Cancer Treat Res. 2014; 159: 21-33
        • White P.B.
        • True E.M.
        • Ziegler K.M.
        • et al.
        Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth.
        J Gastrointest Surg. 2010; 14 (discussion 1893-1884): 1888-1893
        • Khasawneh J.
        • Schulz M.D.
        • Walch A.
        • et al.
        Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion.
        Proc Natl Acad Sci U S A. 2009; 106: 3354-3359
        • Gomez-Chou S.
        • Swidnicka-Siergiejko A.
        • Badi N.
        • et al.
        Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment.
        Cancer Res. 2017;
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue.
        Nature. 1994; 372: 425-432
        • Mayer J.
        • Bates M.W.
        • Dickie M.M.
        Hereditary diabetes in genetically obese mice.
        Science. 1951; 113: 746-747
        • Coleman D.L.
        Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice.
        Diabetologia. 1978; 14: 141-148
        • Hummel K.P.
        • Dickie M.M.
        • Coleman D.L.
        Diabetes, a new mutation in the mouse.
        Science. 1966; 153: 1127-1128
        • Koenig R.J.
        • Cerami A.
        Synthesis of hemoglobin A1c in normal and diabetic mice: Potential model of basement membrane thickening.
        Proc Natl Acad Sci U S A. 1975; 72: 3687-3691
        • Zyromski N.J.
        • Mathur A.
        • Pitt H.A.
        • et al.
        Obesity potentiates the growth and dissemination of pancreatic cancer.
        Surgery. 2009; 146: 258-263
        • Apte M.V.
        • Wilson J.S.
        • Lugea A.
        • Pandol S.J.
        A starring role for stellate cells in the pancreatic cancer microenvironment.
        Gastroenterology. 2013; 144: 1210-1219
        • Apte M.V.
        • Park S.
        • Phillips P.A.
        • et al.
        Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells.
        Pancreas. 2004; 29: 179-187
        • Apte M.V.
        • Haber P.S.
        • Darby S.J.
        • et al.
        Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis.
        Gut. 1999; 44: 534-541
        • Omary M.B.
        • Lugea A.
        • Lowe A.W.
        • Pandol S.J.
        The pancreatic stellate cell: A star on the rise in pancreatic diseases.
        J Clin Invest. 2007; 117: 50-59
        • Pandol S.
        • Gukovskaya A.
        • Edderkaoui M.
        • Dawson D.
        • Eibl G.
        • Lugea A.
        Epidemiology, risk factors, and the promotion of pancreatic cancer: Role of the stellate cell.
        J Gastroenterol Hepatol. 2012; 27: 127-134
        • Mohapatra S.
        • Majumder S.
        • Smyrk T.C.
        • et al.
        Diabetes mellitus is associated with an exocrine pancreatopathy: Conclusions from a review of literature.
        Pancreas. 2016; 45: 1104-1110
        • Eguchi K.
        • Nagai R.
        Islet inflammation in type 2 diabetes and physiology.
        J Clin Invest. 2017; 127: 14-23
        • Habtezion A.
        • Edderkaoui M.
        • Pandol S.J.
        Macrophages and pancreatic ductal adenocarcinoma.
        Cancer Lett. 2016; 381: 211-216
        • Apte M.V.
        • Wilson J.S.
        Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells.
        J Gastroenterol Hepatol. 2012; 27: 69-74
        • Vonlaufen A.
        • Joshi S.
        • Qu C.
        • et al.
        Pancreatic stellate cells: Partners in crime with pancreatic cancer cells.
        Cancer Res. 2008; 68: 2085-2093
        • Kikuta K.
        • Masamune A.
        • Watanabe T.
        • et al.
        Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells.
        Biochem Biophys Res Commun. 2010; 403: 380-384
        • Vaquero E.C.
        • Edderkaoui M.
        • Nam K.J.
        • Gukovsky I.
        • Pandol S.J.
        • Gukovskaya A.S.
        Extracellular matrix proteins protect pancreatic cancer cells from death via mitochondrial and nonmitochondrial pathways.
        Gastroenterology. 2003; 125: 1188-1202
        • Edderkaoui M.
        • Hong P.
        • Vaquero E.C.
        • et al.
        Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase.
        Am J Physiol Gastrointest Liver Physiol. 2005; 289: G1137-G1147
        • Edderkaoui M.
        • Hong P.
        • Lee J.K.
        • Pandol S.J.
        • Gukovskaya A.S.
        Insulin-like growth factor-I receptor mediates the prosurvival effect of fibronectin.
        J Biol Chem. 2007; 282: 26646-26655
        • Lee J.K.
        • Edderkaoui M.
        • Truong P.
        • et al.
        NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases.
        Gastroenterology. 2007; 133: 1637-1648
        • Edderkaoui M.
        • Nitsche C.
        • Zheng L.
        • Pandol S.J.
        • Gukovsky I.
        • Gukovskaya A.S.
        NADPH oxidase activation in pancreatic cancer cells is mediated through Akt-dependent up-regulation of p22phox.
        J Biol Chem. 2011; 286: 7779-7787
        • Xue J.
        • Sharma V.
        • Hsieh M.H.
        • et al.
        Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis.
        Nat Commun. 2015; 6: 7158
        • Clark C.E.
        • Hingorani S.R.
        • Mick R.
        • Combs C.
        • Tuveson D.A.
        • Vonderheide R.H.
        Dynamics of the immune reaction to pancreatic cancer from inception to invasion.
        Cancer Res. 2007; 67: 9518-9527
        • Ino Y.
        • Yamazaki-Itoh R.
        • Shimada K.
        • et al.
        Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer.
        Br J Cancer. 2013; 108: 914-923
        • Sugimoto M.
        • Mitsunaga S.
        • Yoshikawa K.
        • et al.
        Prognostic impact of M2 macrophages at neural invasion in patients with invasive ductal carcinoma of the pancreas.
        Eur J Cancer. 2014; 50: 1900-1908
        • Ozdemir B.C.
        • Pentcheva-Hoang T.
        • Carstens J.L.
        • et al.
        Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival.
        Cancer Cell. 2014; 25: 719-734
        • Rhim A.D.
        • Oberstein P.E.
        • Thomas D.H.
        • et al.
        Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma.
        Cancer Cell. 2014; 25: 735-747
      2. Welcome to The CPDPC!. http://cpdpc.mdanderson.org. Accessed July 22, 2017.

      Biography

      G. Eibl is a professor, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles.

      Biography

      Z. Cruz-Monserrate is an assistant professor, Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus.

      Biography

      M. Korc is a professor, Departments of Medicine, Biochemistry, and Molecular Biology, Division of Endocrinology, Indiana University School of Medicine, the Melvin and Bren Simon Cancer Center, and the Pancreatic Cancer Signature Center, Indianapolis.

      Biography

      M. S. Petrov is a senior lecturer, Department of Surgery, University of Auckland, Auckland, New Zealand.

      Biography

      M. O. Goodarzi is a professor, Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA.

      Biography

      W. E. Fisher is a professor, Department of Surgery, Baylor College of Medicine, Houston, TX.

      Biography

      A. Habtezion is an assistant professor, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, CA.

      Biography

      A. Lugea is an adjunct associate professor, Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, and Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles.

      Biography

      S. J. Pandol is a professor, Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, and Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles.

      Biography

      P. A. Hart is an assistant professor of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus.

      Biography

      D. K. Andersen is program director, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.