Advertisement

Resistant Starch Intakes in the United States

      Abstract

      Objective

      Dietary fiber represents a broad class of undigested carbohydrate components. The components vary in chemical and physical nature and in their physiological outcomes. Resistant starch is starch that escapes digestion in the small intestine and that may be fermented in the large intestine. The purpose of this study was to estimate consumption of resistant starch by the US population and to identify key sources of dietary resistant starch.

      Design

      A database of resistant starch concentrations in foods was developed from the publicly available literature. These concentrations were linked to foods reported in 24-hour dietary recalls from participants in the 1999-2002 National Health and Nutrition Examination Surveys and estimates of resistant starch intakes were generated.

      Subjects

      The study population included 18,305 nonbreastfeeding individuals in the United States.

      Statistical analysis

      The dietary intake of resistant starch was determined for 10 US subpopulations defined by age, sex, and race/ethnicity. Three estimates of resistant starch intake were made for each person based on the minimum, mean, and maximum concentrations of resistant starch in the foods consumed.

      Results

      Americans aged 1 year and older were estimated to consume approximately 4.9 g resistant starch per day based on mean resistant starch concentrations (range 2.8 to 7.9 g resistant starch per day). Breads, cooked cereals/pastas, and vegetables (other than legumes) contributed 21%, 19%, and 19% of total resistant starch intake, respectively, and were top sources of resistant starch.

      Conclusions

      Findings from this study suggest that the estimated intake of resistant starch by Americans is approximately 3 to 8 g per person per day. These estimates of resistant starch intake provide a valuable reference for researchers and food and nutrition professionals and will allow for more accurate estimates of total intakes of carbohydrate compounds that escape digestion in the small intestine.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Academy of Nutrition and Dietetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mann J.
        Carbohydrates.
        in: Bowman B.A. Russell R.M. Present Knowledge in Nutrition. 8th ed. ILSI Press, Washington, DC2001: 59-71
        • Englyst K.N.
        • Englyst H.N.
        Carbohydrate bioavailability.
        Br J Nutr. 2005; 94: 1-11
        • Asp N.G.
        Resistant starch: Proceedings from the second plenary meeting of EURESTA: European FLAIR Concerted Action No. 11 on physiological implications of the consumption of resistant starch in man.
        Eur J Clin Nutr. 1992; 46: S1
        • Brown I.L.
        • McNaught K.J.
        • Moloney R.
        Hi-Maize: New directions in starch technology and nutrition.
        Food Australia. 1995; 47: 272-275
        • Brown I.L.
        Applications and uses of resistant starch.
        J AOAC Int. 2004; 87: 727-732
        • Higgins J.A.
        • Higbee D.R.
        • Donahoo W.T.
        • Brown I.L.
        • Bell M.L.
        • Bessesen D.H.
        Resistant starch consumption promotes lipid oxidation.
        Nutr Metab. 2004; 1: 8-18
        • Bird A.R.
        • Brown I.L.
        • Topping D.L.
        Starch, resistant starch, the gut microflora and human health.
        Current Issues Int Micro. 2000; 1: 25-37
        • Noakes M.
        • Clifton P.M.
        • Nestel P.J.
        • Le Leu R.
        • McIntosh G.
        Effect of high-amylose starch and oat bran on metabolic variables and bowel function in subjects with hypertriglyceridemia.
        Am J Clin Nutr. 1996; 64: 944-951
        • Jenkins D.J.
        • Vuksan V.
        • Kendall C.W.
        • Wursch P.
        • Jeffcoat R.
        • Waring S.
        • Mehling C.C.
        • Vidgen E.
        • Augustin L.S.A.
        • Wong E.
        Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index.
        J Am Coll Nutr. 1998; 17: 609-616
        • Muir J.G.
        • Yeow E.G.
        • Keogh J.
        • Pizzey C.
        • Bird A.R.
        • Sharpe K.
        • O’Dea K.
        • Macrae F.A.
        Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone.
        Am J Clin Nutr. 2004; 79: 1020-1028
        • Grubben M.J.
        • van den Braak C.C.
        • Essenberg M.
        • Olthof M.
        • Tangerman A.
        • Katan M.B.
        • Nagengast F.M.
        Effect of resistant starch on potential biomarkers for colonic cancer risk in patients with colonic adenomas: A controlled trial.
        Dig Dis Sci. 2001; 46: 750-756
        • Behall K.M.
        • Hallfrisch J.
        Plasma glucose and insulin reduction after consumption of breads varying in amylose content.
        Eur J Clin Nutr. 2002; 56: 913-920
        • Heijnen M.L.
        • van Amelsvoort J.M.
        • Deurenberg P.
        • Beynen A.C.
        Limited effect of consumption of uncooked (RS2) or retrograded (RS3) resistant starch on putative risk factors for colon cancer in healthy men.
        Am J Clin Nutr. 1998; 67: 322-331
        • Silvester K.R.
        • Bingham S.A.
        • Pollock J.R.
        • Cummings J.H.
        • O’Neill I.K.
        Effect of meat and resistant starch on fecal excretion of apparent N-nitrose compounds and ammonia from the human large bowel.
        Nutr Cancer. 1997; 29: 13-23
        • Phillips J.
        • Muir J.G.
        • Birkett A.
        • Lu Z.X.
        • Jones G.P.
        • O’Dea K.
        • Young G.P.
        Effect of resistant starch on fecal bulk and fermentation-dependent events in humans.
        Am J Clin Nutr. 1995; 62: 121-130
        • Hylla S.
        • Gostner A.
        • Dusel G.
        • Anger H.
        • Bartram H.P.
        • Christl S.U.
        • Kasper H.
        • Scheppach W.
        Effects of resistant starch on the colon in healthy volunteers: Possible implications for cancer prevention.
        Am J Clin Nutr. 1998; 67: 136-142
        • Cummings J.H.
        • Beatty E.R.
        • Kingman S.M.
        • Bingham S.A.
        • Englyst H.N.
        Digestion and physiological properties of resistant starch in the human large bowel.
        Br J Nutr. 1996; 75: 733-747
        • Robertson M.D.
        • Bickerton A.S.
        • Dennis A.L.
        • Vidal H.
        • Frayn K.N.
        Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism.
        Am J Clin Nutr. 2005; 82: 559-567
        • Keenan M.J.
        • Zhou J.
        • McCutcheon K.L.
        • Raggio A.M.
        • Bateman H.G.
        • Todd E.
        • Jones C.K.
        • Tulley R.T.
        • Melton S.
        • Martin R.J.
        • Hegsted M.
        Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat.
        Obesity. 2006; 14: 1523-1534
        • Zhou J.
        • Hegsted M.
        • McCutcheon K.L.
        • Keenan M.J.
        • Xi X.
        • Raggio A.M.
        • Martin R.J.
        Peptide YY and proglucagon mRNA expression patterns and regulation in the gut.
        Obesity. 2006; 14: 683-689
        • Yamada Y.
        • Hosoya S.
        • Nishimura S.
        • Tanaka T.
        • Kajimoto Y.
        • Nishimura A.
        • Kajimoto O.
        Effect of bread containing resistant starch on postprandial blood glucose levels in humans.
        Biosci Biotechnol Biochem. 2005; 69: 559-566
        • Institute of Medicine
        Dietary Reference Intakes: Proposed Definition of Dietary Fiber.
        National Academies Press, Washington, DC2001
        • Champ M.
        • Langkilde A.M.
        • Brouns F.
        • Kettlitz B.
        • Le Bail Collet Y.
        Advances in dietary fibre characterisation.
        Nutr Res Rev. 2003; 16: 71-82
        • Champ M.M.J.
        Physiological aspects of resistant starch and in vivo measurements.
        J AOAC Int. 2004; 87: 749-755
        • Brighenti F.
        • Casiraghi M.C.
        • Baggio C.
        Resistant starch in the Italian diet.
        Br J Nutr. 1998; 80: 333-341
        • Dysseler P.
        • Hoffem D.
        Estimation of resistant starch intake in Europe.
        Proceedings of the Concluding Plenary Meeting of EURESTA. 1994; : 84-86
        • Elmstahl H.L.
        Resistant starch content in a selection of starchy foods on the Swedish market.
        Eur J Clin Nutr. 2002; 56: 500-505
        • Roberts J.
        • Jones G.P.
        • Rutishauser I.H.E.
        • Birkett A.
        • Gibbons C.
        Resistant starch in the Australian diet.
        Nutr Diet. 2004; 61: 98-104
        • Baghurst P.A.
        • Baghurst K.I.
        • Record S.J.
        Dietary fibre, non-starch polysaccharides and resistant starch: A review.
        Food Australia. 1996; 48: S1-S36
        • Platel K.
        • Shurpalekar K.S.
        Resistant starch content of Indian foods.
        Plant Foods Hum Nutr. 1994; 45: 91-95
        • Institute of Medicine
        Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids.
        National Academies Press, Washington, DC2005
      1. Moshfegh A, Goldman J, Cleveland L. What we eat in America, NHANES 2001-2002: Usual nutrient intakes from food compared to Dietary Reference Intakes. Available at: http://www.ars.usda.gov/ba/bhnrc/fsrg. Accessed November 2006.

        • Englyst H.N.
        • Cummings J.H.
        Digestion of the polysaccharides of some cereal foods in the human small intestine.
        Am J Clin Nutr. 1985; 42: 778-787
        • Englyst H.N.
        • Cummings J.H.
        Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine.
        Am J Clin Nutr. 1986; 44: 42-50
        • Englyst H.N.
        • Cummings J.H.
        Digestion of polysaccharides of potato in the small intestine of man.
        Am J Clin Nutr. 1987; 45: 423-431
        • Marlett J.A.
        • Longacre M.J.
        Comparisons of in vitro and in vivo measures of resistant starch in selected grain products.
        Cereal Chem. 1996; 73: 63-68
        • Berry C.S.
        Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre.
        J Cereal Sci. 1986; 4: 301-314
        • Englyst H.N.
        • Kingman S.M.N.
        • Cummings J.H.
        Classification and measurement of nutritionally important starch fractions.
        Eur J Clin Nutr. 1992; 46: S33-S50
        • Gelroth J.A.
        • Ranhotra G.S.
        Determination of resistant starch in selected grain-based foods.
        J AOAC Int. 2000; 84: 988-991
        • Englyst K.N.
        • Vinoy S.
        • Englyst H.N.
        • Lang V.
        Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose.
        Br J Nutr. 2003; 89: 329-340
      2. Foods Standards Agency. Nutrient Analysis of Bread and Morning Goods, MAFF/DH JFSSG Project Number AN1062: Analytical Report. Available at: http://www.food.gov.uk/science/surveillance/maffinfo/2000/maff-2000-194. Accessed September 21, 2005.

        • Giacco R.
        • Brighenti F.
        • Parillo M.
        • Capuano M.
        • Ciardullo A.V.
        • Rivieccio A.
        • Rivellese A.A.
        • Riccardi G.
        Characteristics of some wheat-based foods of the Italian diet in relation to their influence on postprandial glucose metabolism in patients with type 2 diabetes.
        Br J Nutr. 2001; 85: 33-40
        • Hoebler C.
        • Karinthi A.
        • Chiron H.
        • Champ M.
        • Barry J.L.
        Bioavailability of starch in bread rich in amylose: Metabolic responses in healthy subjects and starch structure.
        Eur J Clin Nutr. 1999; 53: 360-366
        • Birkett A.M.
        Dietary Resistant Starch Interacts with Non-Starch Polysaccharide and Protein To Influence Colonic Protein Fermentation, with Possible Implications for Colon Cancer Risk in Humans.
        ([doctoral thesis]) School of Nutrition and Public Health, Faculty of Health and Behavioural Sciences, Deakin University, Geelong, Victoria, Australia1997
        • Sharavathy M.K.
        • Urooj A.
        • Puttaraj S.
        Nutritionally important starch fractions in cereal based Indian food preparations.
        Food Chem. 2001; 75: 241-247
        • Englyst H.N.
        • Veenstra J.
        • Hudson G.J.
        Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response.
        Br J Nutr. 1996; 75: 327-337
        • Akerberg A.K.
        • Liljeberg H.G.
        • Granfeldt Y.E.
        • Drews A.W.
        • Björck I.M.
        An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber.
        J Nutr. 1998; 128: 651-660
        • Dysseler P.
        • Hoffem D.
        Comparison between Englyst’s method and Berry’s modified method on 20 different starch foods.
        Proceedings of the Concluding Plenary Meeting of EURESTA. 1994; : 95-98
        • Eerlingen R.C.
        • van Haesendonck I.P.
        • Paepe de G.
        • Delcour J.A.
        Enzyme-resistant starch III.
        Cereal Chem. 1994; 71: 165-170
        • Englyst K.N.
        • Englyst H.N.
        • Hudson G.J.
        • Cole T.J.
        • Cummings J.H.
        Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response.
        Am J Clin Nutr. 1999; 69: 448-454
        • Goni I.
        • Garcýa-Dýaz L.
        • Manas E.
        • Saura-Calixto F.
        Analysis of resistant starch: A method for foods and food products.
        Food Chem. 1996; 56: 445-449
        • Hawkins A.
        • Johnson S.K.
        In vitro carbohydrate digestibility of whole-chickpea and chickpea bread products.
        Int J Food Sci Nutr. 2005; 56: 147-155
        • Rosin P.M.
        • Lajolo F.M.
        • Menezes E.W.
        Measurement and characterization of dietary starches.
        J Food Comp Anal. 2002; 15: 367-377
        • Saura-Calixto F.
        • Garcia-Alonso A.
        • Goni I.
        • Bravo L.
        In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis.
        J Agric Food Chem. 2000; 48 (3342-3327)
        • Skrabanja V.
        • Liljeberg H.G.
        • Hedley C.L.
        • Kreft I.
        • Björck I.M.
        Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in peas (Pisum sativum L.).
        J Agric Food Chem. 1999; 47: 2033-2039
        • Skrabanja V.
        • Liljeberg Elmstahl H.G.
        • Kreft I.
        • Björck I.M.
        Nutritional properties of starch in buckwheat products: Studies in vitro and in vivo.
        J Agric Food Chem. 2001; 49: 490-496
        • Agama-Acevedo E.
        • Rendon-Villalobos R.
        • Tovar J.
        • Paredes-Lopez O.
        • Islas-Hernandez J.J.
        • Bello-Perez L.A.
        In vitro starch digestibility changes during storage of maize flour tortillas.
        Nahrung. 2004; 48: 38-42
        • Islas-Hernández J.
        • Rendón-Villalobos R.
        • Agama-Acevedo E.
        • Gutiérrez-Meraz F.
        • Tovar J.
        • Arámbula-Villa G.
        • Bello-Pérez L.A.
        In vitro digestion rate and resistant starch content of tortillas stored at two different temperatures.
        LWT Food Sci Technol. 2006; 39: 947-951
        • Rendon-Villalobos R.
        • Bello-Pérez L.A.
        • Osorio-Díaz P.
        • Tovar J.
        • Paredes-López O.
        Effect of storage time on in vitro digestibility and resistant starch content in nixtamal, masa and tortilla.
        Cereal Chem. 2002; 9: 340-344
        • Sáyago-Ayerdi S.G.
        • Tovar J.
        • Osorio-Díaz P.
        • Paredes-López O.
        • Bello-Pérez L.A.
        In vitro starch digestibility and predicted glycemic index of corn tortilla, black beans, and tortilla-bean mixture: Effect of cold storage.
        J Agric Food Chem. 2005; 53: 1281-1285
        • Liljeberg Elmstahl H.
        Resistant starch content in a selection of starchy foods on the Swedish market.
        Eur J Clin Nutr. 2002; 56: 500-505
        • Muir J.G.
        • O’Dea K.
        Measurement of resistant starch: Factors affecting the amount of starch escaping digestion in vitro.
        Am J Clin Nutr. 1992; 56: 123-127
        • Champ M.
        Determination of resistant starch in foods and food products: Interlaboratory study.
        Eur J Clin Nutr. 1992; 46: S51-S62
        • Faisant N.
        • Gallant D.J.
        • Bouchet B.
        • Champ M.
        Banana starch breakdown in the human small intestine studied by electron microscopy.
        Eur J Clin Nutr. 1995; 49: 98-104
        • McCleary B.V.
        • Monaghan D.A.
        Measurement of resistant starch.
        J AOAC Int. 2002; 85: 665-675
        • McCleary B.V.
        • McNally M.
        • Rossiter P.
        Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: Collaborative study.
        J AOAC Int. 2002; 85: 1103-1111
        • McCleary B.V.
        • Rossiter P.
        Measurement of novel dietary fibers.
        J AOAC Int. 2004; 87: 707-717
        • Muir J.G.
        • O’Dea K.
        Validation of an in vitro assay for predicting the amount of starch that escapes digestion in the small intestine of humans.
        Am J Clin Nutr. 1993; 57: 540-546
        • Olesen M.
        • Rumessen J.J.
        • Gudmand-Hoyer E.
        The hydrogen breath test in resistant starch research.
        Eur J Clin Nutr. 1992; 46: S133-S134
        • Silvester K.R.
        • Englyst H.N.
        • Cummings J.H.
        Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent.
        Am J Clin Nutr. 1995; 62: 403-411
        • Crawford C.
        Survey of resistant starch in processed foods.
        FMBRA Bull. 1987; 2: 59-64
        • Garcia-Alonso A.
        • Goni I.
        Effect of processing on potato starch: In vitro availability and glycaemic index.
        Nahrung. 2000; 44: 19-22
        • Kingman S.M.
        • Englyst H.N.
        The influence of food preparation methods on the in vitro digestibility of starch in potatoes.
        Food Chem. 1994; 49: 181-186
        • Lintas C.
        • Cappelloni M.
        • Adorisio S.
        • Clementi A.
        • Del Toma E.
        Effect of ripening on resistant starch and total sugars in Musa paradisiaca sapientum: Glycaemic and insulinaemic responses in normal subjects and NIDDM patients.
        Eur J Clin Nutr. 1995; 49: S303-S306
        • Skrabanja V.
        • Kreft I.
        Resistant starch formation following autoclaving of buckwheat (Fagopyrum esculentum Moench) groats.
        J Agric Food Chem. 1998; 46: 2020-2023
        • Eggum B.O.
        • Juliano B.O.
        • Perez C.M.
        • Acedo E.F.
        The resistant starch, undigestible energy and undigestible protein contents of raw and cooked milled rice.
        J Cereal Sci. 1993; 18: 159-169
        • Bednar G.E.
        • Patil A.R.
        • Murray S.M.
        • Grieshop C.M.
        • Merchen N.R.
        • Fahey Jr, G.C.
        Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
        J Nutr. 2001; 131: 276-286
        • Ortuno J.
        • Ros G.
        • Periago M.J.
        • Martinez C.
        • Lopez G.
        Cooking water uptake and starch digestible value of selected Spanish rices.
        J Food Qual. 1996; 19: 79-89
        • Landa-Habana L.
        • Pina-Hernandez A.
        • Agama-Acevedo E.
        • Tovar J.
        • Bello-Pérez L.A.
        Effect of cooking procedures and storage on starch bioavailability in common beans (Phaseolus vulgaris L.).
        Plant Foods Hum Nutr. 2004; 59: 133-136
        • Osorio-Díaz P.
        • Bello-Pérez L.A.
        • Sáyago-Ayerdi S.G.
        • Benítez-Reyes MdP.
        • Tovar J.
        • Paredes-López O.
        Effect of processing and storage time on in vitro digestibility and resistant starch content of two bean (Phaseolus vulgaris L) varieties.
        J Sci Food Agric. 2003; 83: 1283-1288
        • Vargas-Torres A.
        • Osorio-Díaz P.
        • Islas-Hernandez J.J.
        • Tovar J.
        • Paredes-López O.
        • Bello-Pérez L.A.
        Chemical composition, starch bioavailability and indigestible fraction of common beans (Phaseolus vulgaris L.) varieties.
        J Food Comp Analysis. 2004; 17: 605-612
        • Veena A.
        • Urooj A.
        • Puttaraj S.
        Effect of processing on the composition of dietary fibre and starch in some legumes.
        Nahrung. 1995; 39: 132-138
        • Noah L.
        • Guillon F.
        • Bouchet B.
        • Buleon A.
        • Molis C.
        • Gratas M.
        • Champ M.
        Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans.
        J Nutr. 1998; 128: 977-985
        • Marconi E.
        • Ruggeri S.
        • Cappelloni M.
        • Leonardi D.
        • Carnovale E.
        Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking.
        J Agric Food Chem. 2000; 48: 5986-5994
        • Araya H.
        • Pak N.
        • Vera G.
        • Alvina M.
        Digestion rate of legume carbohydrates and glycemic index of legume-based meals.
        Int J Food Sci Technol. 2003; 54: 119-126
        • Gormley R.
        • Walshe T.
        Effects of boiling, warm-holding, mashing and cooling on the levels of enzyme-resistant potato starch.
        Int J Food Sci Technol. 1999; 34: 281-286
        • Leeman M.
        • Ostman E.
        • Björck I.
        Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects.
        Eur J Clin Nutr. 2005; 59: 1266-1271
        • Leeman A.M.
        • Bårström L.M.
        • Björck M.E.
        In vitro availability of starch in heat-treated potatoes as related to genotype, weight, and storage time.
        J Sci Food Agric. 2005; 85: 751-756
      3. Foods Standards Agency. Nutrient Analysis of Pasta and Pasta Sauces, FSIS 64/04. 2004. Available at: http://www.food.gov.uk/science/surveillance/fsis2004branch/fsis6504. Accessed November 21, 2005.

      4. National Center for Health Statistics. 1999-2000 National Health and Nutrition Examination Survey Data. Available at: http://www.cdc.gov/nchs/about/major/nhanes/nhanes99_00.htm. Accessed February 21, 2007.

      5. National Center for Health Statistics. 2001-2002 National Health and Nutrition Examination Survey Data. Available at: http://www.cdc.gov/nchs/about/major/nhanes/nhanes01-02.htm. Accessed February 21, 2007.

        • Environmental Protection Agency
        Revised Food Commodity Intake Database (FCID) data and documentation.
        ([on CD-ROM]) Office of Prevention, Pesticides and Toxic Substances, Washington, DC2004
        • US Department of Agriculture, Agricultural Research Service
        Multi-year Food and Nutrient Database for Dietary Studies, Version 1.0.
        Food Surveys Research Group, Beltsville, MD2004

      Biography

      M. M. Murphy and J. S. Douglass are nutrition science managers, ENVIRON International Corporation, Arlington, VA.

      Biography

      A. Birkett is a business scientist, Nutrition Research Department, National Starch Food Innovation, Bridgewater, NJ.

      Linked Article

      • May 2008 Erratum
        Journal of the American Dietetic AssociationVol. 108Issue 5
        • Preview
          The authors of the research article “Resistant Starch Intakes in the United States,” which appeared in the January 2008 Journal (vol 108, pp 67-78), wish to correct an error in their article. On page 69, in the right-hand column, the two consecutive paragraphs beginning with, “Most direct methods…” and, “Indirect resistant starch analysis” should be replaced with the following single paragraph: Most direct methods currently used for resistant starch analysis are modifications of a method developed by Berry (37), in which resistant starch is quantified as the starch remaining after samples have been incubated with enzymes to remove non-resistant starch.
        • Full-Text
        • PDF