Advertisement

Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review

      Abstract

      Several factors may alter apparent resting metabolic rate (RMR) during measurement with indirect calorimetry. Likewise, numerous indirect calorimetry measurement protocols have been developed over the years, and the methodology employed could influence test results. As part of a larger project to determine the role of indirect calorimetry in clinical practice, a systematic review of the literature was undertaken to determine the ideal subject condition and test methodology for obtaining reliable measurement of RMR with indirect calorimetry. Food, ethanol, caffeine, and nicotine affect RMR for a variable number of hours after consumption; therefore, intake of these items must be controlled before measurement. Activities of daily living increase metabolic rate, but a short rest (≤20 minutes) before testing is sufficient for the effect to dissipate. Moderate or vigorous physical activity has a longer carryover effect and therefore must be controlled in the hours before a measurement of RMR is attempted. Limited data were found regarding ideal ambient conditions for RMR testing. Measurement duration of 10 minutes with the first 5 minutes deleted and the remaining 5 minutes having a coefficient of variation <10% gave accurate readings of RMR. Individuals preparing for RMR measurement via indirect calorimetry should refrain from eating, consuming ethanol and nicotine, smoking, and engaging in physical activity for varying times before measurement. The test site should be physically comfortable and the individual should have 10 to 20 minutes to rest before measurement commences. A 10-minute test duration with the first 5 minutes discarded and the remaining 5 minutes having a coefficient of variation of <10% will give an accurate measure of RMR.
      To read this article in full you will need to make a payment

      References

        • Frankenfield D.
        • Roth-Yousey L.
        • Compher C.
        Comparison of predictive equations for resting metabolic rate in healthy, non-obese and obese individuals.
        J Am Diet Assoc. 2005; 105: 775-789
      1. ADA Evidence Analysis Guide. 3rd ed. American Dietetic Association, Chicago, IL2003 (Available at: http://adaevidencelibrary.com/topic.cfm?cat=1155&auth=1. Accessed April 21, 2006.)
        • Audrain J.E.
        • Klesges R.C.
        • DePue K.
        • Klesges L.M.
        The individual and combined effects of cigarette smoking and food on resting energy expenditure.
        Int J Obes. 1991; 15: 813-821
        • Bielinski R.
        • Schutz Y.
        • Jequier E.
        Energy metabolism during the postexercise recovery in man.
        Am J Clin Nutr. 1985; 42: 69-82
        • Felig P.
        • Cunningham J.
        • Levitt M.
        • Hendler R.
        • Nadel E.
        Energy expenditure in obesity in fasting and postprandial state.
        Am J Physiol. 1983; 244: E45-E51
        • Kinabo J.L.
        • Durnin J.V.G.A.
        Effect of meal frequency on the thermic effect of food in women.
        Eur J Clin Nutr. 1990; 44: 389-395
        • Kinabo J.L.
        • Durnin J.V.G.A.
        Thermic effect of food in man.
        Br J Nutr. 1990; 64: 37-44
        • Perkins K.A.
        • Epstein L.H.
        • Stiller R.L.
        • Sexton J.E.
        • Fernstrom M.H.
        • Jacob R.G.
        • Solberg R.
        Metabolic effects of nicotine after a meal in smokers and non-smokers.
        Am J Clin Nutr. 1990; 52: 228-233
        • Poelhman E.T.
        • Arciero P.J.
        • Melby C.L.
        • Badylak S.F.
        Resting metabolic rate and postprandial thermogenesis in vegetarians and nonvegetarians.
        Am J Clin Nutr. 1988; 48: 209-213
        • Reed G.W.
        • Hill J.O.
        Measuring the thermic effect of food.
        Am J Clin Nutr. 1996; 63: 164-169
        • Segal K.R.
        • Chun A.
        • Coronel P.
        • Cruz-Noori A.
        • Santos R.
        Reliability of the measurement of postprandial thermogenesis in men of three levels of body fatness.
        Metabolism. 1992; 41: 754-762
        • Segal K.R.
        • Edano A.
        • Blando L.
        • Pi-Sunyer F.X.
        Comparison of thermic effects of constant and relative caloric loads in lean and obese men.
        Am J Clin Nutr. 1990; 51: 14-21
        • Segal K.R.
        • Gutin B.
        Thermic effects of food and exercise in lean and obese women.
        Metabolism. 1983; 32: 581-589
        • Visser M.
        • Deurenberg P.
        • van Stavern W.A.
        • Hautvast G.A.J.
        Resting metabolic rate and diet-induced thermogenesis in young and elderly subjects.
        Am J Clin Nutr. 1995; 61: 771-778
        • Weststrate J.A.
        Resting metabolic rate and diet induced thermogenesis.
        Am J Clin Nutr. 1993; 58: 592-601
        • Weststrate J.A.
        • Hautvast J.G.
        The effects of short-term carbohydrate overfeeding and prior exercise on resting metabolic rate and diet-induced thermogenesis.
        Metabolism. 1990; 39: 1232-1239
        • Bissoli L.
        • Armellini F.
        • Zamboni M.
        • Mandragona R.
        • Ballarin A.
        • Bosello O.
        Resting metabolic rate and thermogenic effect of food in vegetarian diets compared with Mediterranean diets.
        Ann Nutr Metab. 1999; 43: 140-144
        • Levine J.A.
        • Harris M.M.
        • Morgan M.Y.
        Energy expenditure in chronic alcohol abuse.
        Eur J Clin Invest. 2000; 30: 779-786
        • Raben A.
        • Agerholm
        • Larsen L.
        • Flint A.
        • Holst J.J.
        • Astrup A.
        Meals with similar densities but rich in protein, fat, carbohydrate or alcohol have different effects on energy expenditure and substrate metabolism but not on appetite and energy intake.
        Am J Clin Nutr. 2003; 77: 91-100
        • Haugen H.A.
        • Melanson E.L.
        • Tran Z.V.
        • Kearney J.T.
        • Hill J.O.
        Variability of measured resting metabolic rate.
        Am J Clin Nutr. 2003; 78: 1141-1144
        • Klesges R.C.
        • Mealer C.Z.
        • Kesges L.M.
        Effects of alcohol intake on resting energy expenditure in young women social drinkers.
        Am J Clin Nutr. 1994; 58: 805-809
        • Weststrate J.A.
        • Wunnink I.
        • Deurenberg P.
        • Hautvast J.G.
        Alcohol and its acute effects on resting metabolic rate and diet-induced thermogenesis.
        Br J Nutr. 1990; 64: 413-425
        • Collins L.C.
        • Walker J.
        • Stamford B.A.
        Smoking multiple high- vs low-nicotine cigarettes.
        Metabolism. 1996; 45: 923-926
        • Jessen A.B.
        • Toburo S.
        • Astrup A.
        Effect of chewing gum containing nicotine and caffeine on energy expenditure and substrate utilization.
        Am J Clin Nutr. 2003; 77: 1442-1447
        • Klesges R.C.
        • DePue K.
        • Audrain J.
        • Klesges L.M.
        • Meyers A.W.
        Metabolic effects of nicotine gum and cigarette smoking.
        J Consult Clin Psychol. 1991; 59: 749-752
        • Perkins K.A.
        • Sexton J.E.
        Influence of aerobic fitness, activity level, and smoking history on the acute thermic effect of nicotine.
        Physiol Behav. 1995; 57: 1097-1102
        • Perkins K.A.
        • Epstein L.H.
        • Stiller R.L.
        • Marks B.L.
        • Jacob R.G.
        Acute effects of nicotine on resting energy expenditure in cigarette smokers.
        Am J Clin Nutr. 1989; 50: 545-550
        • Vander Weg M.W.
        • Klesges R.C.
        • Ward K.D.
        Differences in resting energy expenditure between black and white smokers.
        Eur J Clin Nutr. 2000; 54: 895-899
        • Collins L.C.
        • Cornelius M.F.
        • Vogel R.L.
        • Walker J.F.
        • Stamford B.A.
        Effect of caffeine and/or cigarette smoking on resting energy expenditure.
        Int J Obes Relat Metab Disord. 1994; 18: 551-556
        • Koot P.
        • Deurenberg P.
        Comparison of changes in energy expenditure and body temperatures after caffeine consumption.
        Ann Nutr Metab. 1995; 39: 135-142
        • Yoshida T.
        • Sakane N.
        • Umekawa T.
        • Kondo M.
        Relationship between basal metabolic rate, thermogenic response to caffeine, and body weight loss following combined low-calorie and exercise treatment in obese women.
        Int J Obes Relat Metab Disord. 1994; 18: 345-350
        • Arcerio P.J.
        • Bougopoulos B.C.
        • Nindl B.C.
        • Benowitz N.L.
        Influence of age on the thermic response to caffeine in women.
        Metabolism. 2000; 49: 101-107
        • Bracco D.
        • Ferrarra J.M.
        • Arnaud M.J.
        • Jequier E.
        • Schutz Y.
        Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women.
        Am J Physiol. 1995; 269: E671-E678
        • Fredrix E.W.H.M.
        • Soeters P.B.
        • von Meyenfeldt M.F.
        • Saris W.H.M.
        Measurement of resting energy expenditure in a clinical setting.
        Clin Nutr. 1990; 9: 299-304
        • Turley K.R.
        • McBride P.J.
        • Wilmore J.H.
        Resting metabolic rate measured after subjects spent the night at home vs at a clinic.
        Am J Clin Nutr. 1993; 58: 141-144
        • Igawa S.
        • Sakamaki M.
        • Miyazaki M.
        Examination of the reliability of the portable calorimeter.
        Clin Exp Pharmacol Physiol. 2002; 29: S13-S15
        • Kwashiwazaki H.
        • Dejima Y.
        • Suzuki T.
        Influence of upper and lower thermoneutral room temperatures (20°C and 25°C) on fasting and post-prandial resting metabolism under different outdoor temperatures.
        Eur J Clin Nutr. 1990; 44: 405-413
        • Schols A.M.W.J.
        • Schoffelen P.F.M.
        • Ceulemans H.
        • Wouters E.F.M.
        • Saris W.H.M.
        Measurement of resting energy expenditure in patients with chronic obstructive pulmonary disease in a clinical setting.
        JPEN J Parenter Enteral Nutr. 1992; 16: 364-368
        • Feurer I.D.
        • Mullen J.L.
        Bedside measurement of resting energy expenditure and respiratory quotient via indirect calorimetry.
        Nutr Clin Prac. 1986; 1: 43-49
        • McClave S.A.
        • McClain C.J.
        • Snider H.L.
        Should indirect calorimetry be used as part of nutritional assessment?.
        J Clin Gastroenterol. 2001; 33: 14-19
        • Swinamer D.L.
        • Phang P.T.
        • Jones R.L.
        • Grace M.
        • Garner King E.
        Twenty-four hour energy expenditure in critically ill patients.
        Crit Care Med. 1987; 15: 637-643
        • Burleson Jr, M.A.
        • O’Bryant H.S.
        • Stone M.H.
        • Collins M.A.
        • Triplett-McBride T.
        Effects of weight training exercise and treadmill exercise on post-exercise oxygen consumption.
        Med Sci Sports Exerc. 1998; 30: 518-522
        • Freeman-Akabas S.
        • Colt E.
        • Kissileff H.R.
        • Pi-Sunyer F.X.
        Lack of sustained increase in VO2 following exercise in fit and unfit subjects.
        Am J Clin Nutr. 1985; 41: 545-549
        • Willms W.L.
        • Plowman S.A.
        Separate and sequential effects of exercise and meal ingestion on energy expenditure.
        Ann Nutr Metab. 1991; 35: 347-356
        • Short K.R.
        • Sedlock D.A.
        Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects.
        J Appl Physiol. 1997; 83: 153-159
        • Short K.R.
        • Wiest J.M.
        • Sedlock D.A.
        The effect of upper body exercise intensity and duration on postexercise oxygen consumption.
        Int J Sports Med. 1996; 17: 559-563
        • Binzen C.A.
        • Swan P.D.
        • Manore M.M.
        Postexercise oxygen consumption and substrate use after resistance exercise in women.
        Med Sci Sports Exerc. 2001; 33: 932-938
        • Gillette C.A.
        • Bullough R.C.
        • Melby C.L.
        Postexercise energy expenditure in response to acute aerobic or resistive exercise.
        Int J Sport Nutr. 1994; 4: 347-360
        • Williamson D.L.
        • Kirwan J.P.
        A single bout of concentric resistance exercise increases basal metabolic rate 48 hours after exercise in healthy 59-77-year-old men.
        J Gerontol A Biol Sci Med Sci. 1997; 52: M352-M355
        • Levine J.A.
        • Schleusner S.J.
        • Jensen M.D.
        Energy expenditure of nonexercise activity.
        Am J Clin Nutr. 2000; 72: 1451-1454
        • Brandi L.S.
        • Bertolini R.
        • Janni A.
        • Gioia A.
        • Angeletti C.A.
        Energy metabolism of thoracic surgical patients in the early postoperative period. Effect of posture.
        Chest. 1996; 109: 630-637
        • McClave S.A.
        • Snider H.L.
        Use of indirect calorimetry in clinical nutrition.
        Nutr Clin Pract. 1992; 7: 207-221
        • van Ooijen A.M.J.
        • van Marken Lichtenbelt W.D.
        • van Steenhoven A.A.
        • Westerterp K.R.
        Seasonal changes in metabolic and temperature responses to cold air in humans.
        Physiol Behav. 2004; 82: 545-553
        • Isbell T.R.
        • Klesges R.C.
        • Meyers A.W.
        • Klesges L.M.
        Measurement reliability using repeated measurements of resting energy expenditure with a face mask, mouthpiece, and ventilated canopy.
        JPEN J Parenter Enteral Nutr. 1991; 15: 165-168
        • Askanazi J.
        • Silverberg P.A.
        • Foster R.J.
        • Hyman A.I.
        • Milic-Emili J.
        • Kinna J.M.
        Effects of respiratory apparatus on breathing pattern.
        J Appl Physiol. 1980; 48: 577-580
        • McAnena O.J.
        • Harvey L.P.
        • Katzeff H.L.
        • Daly J.M.
        Indirect calorimetry.
        JPEN J Parenter Enteral Nutr. 1986; 10: 555-567
        • Forse R.A.
        Comparison of gas exchange measurements with a mouthpiece, face mask, and ventilated canopy.
        JPEN J Parenter Enteral Nutr. 1993; 17: 388-391
        • Gasic S.
        • Schneider B.
        • Waldhausl W.
        Indirect calorimetry.
        Horm Metab Res. 1997; 29: 12-15
        • Horner N.K.
        • Lampe J.W.
        • Patterson R.E.
        • Newuhouser M.L.
        • Beresford S.A.
        • Prentice R.L.
        Indirect calorimetry protocol development for measuring resting metabolic rate as a component of total energy expenditure in free-living postmenopausal women.
        J Nutr. 2001; 131: 2215-2218
        • Leff M.L.
        • Hill J.O.
        • Yates A.A.
        • Cotsonis G.A.
        • Heymsfield S.B.
        Resting metabolic rate.
        JPEN J Parenter Enteral Nutr. 1987; 11: 354-359
        • Delinkanaki-Skaribas E.
        The Role of Sampling Duration on Basal Metabolic Rate Measurement Error. University of Houston, Houston, TX2001 ([dissertation])
        • Cunningham K.F.
        • Aeberhardt L.E.
        • Wiggs B.R.
        • Phang P.
        Appropriate interpretation of indirect calorimetry for determining energy expenditure of patients in intensive care units.
        Am J Surg. 1994; 167: 547-549
        • Frankenfield D.C.
        • Sarson G.Y.
        • Blosser S.A.
        • Cooney R.N.
        • Smith J.S.
        Validation of a 5-minutes steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients.
        J Am Coll Nutr. 1996; 15: 397-402
        • McClave S.A.
        • Spain D.A.
        • Skolnick J.L.
        • Lowen C.C.
        • Kieber M.J.
        • Wickerham P.S.
        • Vogt J.R.
        • Looney S.W.
        Achievement of steady state optimizes results when performing indirect calorimetry.
        JPEN J Parenter Enteral Nutr. 2003; 27: 16-20
        • Petros S.
        • Engelmann L.
        Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and spontaneously breathing critically ill patients.
        Intensive Care Med. 2001; 27: 1164-1168
        • Stokes M.A.
        • Hill G.L.
        A single, accurate measurement of resting metabolic expenditure.
        JPEN J Parenter Enteral Nutr. 1992; 16: 193-194
        • van Lanschot J.J.
        • Feenstra B.W.
        • Vermeij C.G.
        • Bruining H.A.
        Accuracy of intermittent metabolic gas exchange recordings extrapolated for diurnal variation.
        Crit Care Med. 1988; 16: 737-742
        • van Lanschot J.J.
        • Feenstra B.W.
        • Vermeij C.G.
        • Bruining H.A.
        Calculation vs measurement of total energy expenditure.
        Crit Care Med. 1986; 14: 981-985
        • Frankenfield D.C.
        • Wiles II, C.E.
        • Bagley S.
        • Siegel J.H.
        Relationships between resting and total energy expenditure in injured and septic patients.
        Crit Care Med. 1994; 22: 1796-1804
        • Heymsfield S.B.
        • Hill J.O.
        • Evert M.
        • Casper K.
        • DiGirolamo M.
        Energy expenditure during continuous intragastric infusion of fuel.
        Am J Clin Nutr. 1987; 45: 526-533
        • Weststrate J.A.
        • Weys P.J.M.
        • Poortvliet E.J.
        • Deurenberg P.
        • Hautvast J.G.A.J.
        Diurnal variation in postabsorptive resting metabolic rate and diet-induced thermogenesis.
        Am J Clin Nutr. 1989; 58: 592-601
        • Adriaens M.P.
        • Schoffelen P.F.
        • Westerterp K.R.
        Intra-individual variation of basal metabolic rate and the influence of daily habitual physical activity before testing.
        Br J Nutr. 2003; 90: 419-423
        • Fredrix E.W.
        • Soeters P.B.
        • Deerenberg I.M.
        • Kester A.D.M.
        • von Meyenfeldt M.F.
        • Saris W.H.M.
        Resting and sleeping energy expenditure in the elderly.
        Eur J Clin Nutr. 1990; 44: 741-747
        • Gibbons M.R.
        • Henry C.J.
        • Ulijaszek S.J.
        • Lightowler H.J.
        Intra-individual variation in RMR in older people.
        Br J Nutr. 2004; 91: 485-489
        • Goran M.I.
        • Beer W.H.
        • Wolfe R.R.
        • Poehlman E.T.
        • Young V.R.
        Variation in total energy expenditure in young healthy free-living men.
        Metabolism. 1993; 42: 487-496
        • Henry C.J.K.
        • Lightowler H.J.
        • Marchini J.
        Intra-individual variation in resting metabolic rate during the menstrual cycle.
        Br J Nutr. 2003; 89: 811-817
        • Brandi L.S.
        • Bertolini R.
        • Calafa M.
        Indirect calorimetry in critically ill patients.
        Nutrition. 1997; 13: 349-358
        • Elia M.
        • Livesey G.
        Energy expenditure and fuel selection in biological systems.
        World Rev Nutr Diet. 1992; 70: 68-131
        • Jequier E.
        • Acheson K.
        • Schutz Y.
        Assessment of energy expenditure and fuel utilization in man.
        Ann Rev Nutr. 1987; 7: 187-208
        • Matarese L.
        Indirect calorimetry. Technical aspects.
        J Am Diet Assoc. 1997; 14: 6-12
        • Peronnet I.
        • Massicotte D.
        Table of nonprotein respiratory quotient.
        Can J Sport Sci. 1991; 16: 23-29
        • Weissman C.
        • Kemper M.
        • Askanazi J.
        • Hyman A.I.
        • Kinney J.M.
        Resting metabolic rate of the critically ill patient.
        Anesthesiology. 1986; 64: 673-679
        • Johnstone A.M.
        • Faber P.
        • Gibney E.R.
        • Elia M.
        • Horgan G.
        • Golden B.E.
        • Stubbs R.J.
        Effect of an acute fat on energy compensation and feeding behaviour in lean men and women.
        Int J Obesity. 2002; 26: 1623-1628
        • Romijn J.A.
        • Godfried M.H.
        • Hommes M.J.T.
        • Endert E.
        • Sauerwein H.P.
        Decreased glucose oxidation during short-term starvation.
        Metabolism. 1990; 39: 525-530
        • Zauner C.
        • Schneeweiss B.
        • Kranz A.
        • Madl C.
        • Ratheiser K.
        • Kramer L.
        • Roth E.
        • Schneider B.
        • Lenz K.
        Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine.
        Am J Clin Nutr. 2000; 71: 1511-1515
        • Brandi L.S.
        • Oleggini M.
        • Lachi S.
        • Frediani M.
        • Bevilacqua S.
        • Mosca F.
        • Ferrannini E.
        Energy metabolism of surgical patients in the early postoperative period.
        Crit Care Med. 1988; 16: 18-22
        • Jeevanandam M.
        • Shamos R.F.
        • Petersen S.R.
        Substrate efficacy in early nutrition support of critically ill multiple trauma victims.
        JPEN J Parenter Enteral Nutr. 1992; 16: 511-520
        • Saltzman E.
        • Roberts S.B.
        Effects of energy imbalance in energy expenditure and respiratory quotient in young and older men.
        Aging Clin Exper Res. 1996; 8: 370-378
        • Delafosse B.
        • Viale J.P.
        • Pachiaudi C.
        • Normand S.
        • Goudable J.
        • Bouffard Y.
        • Annat G.
        • Bertrand O.
        Long-and medium-chain triglycerides during parenteral nutrition in critically ill patients.
        Am J Physiol. 1997; 272: E550-E555
        • Frankenfield D.C.
        • Smith J.S.
        • Cooney R.N.
        Accelerated nitrogen loss after traumatic injury is not attenuated by achievement of energy balance.
        JPEN J Parenter Enteral Nutr. 1997; 21: 324-329
        • Kan M.N.
        • Chang H.H.
        • Sheu W.F.
        • Cheng C.H.
        • Lee B.J.
        • Huang Y.C.
        Estimation of energy requirements for mechanically ventilated critically ill patients using nutritional status.
        Crit Care. 2003; 7: R108-R115
        • Surina D.M.
        • Langhans W.
        • Pauli R.
        • Wenk C.
        Meal composition affects postprandial fatty acid oxidation.
        Am J Physiol. 1993; 264: R1065-R1070
        • Ireton-Jones C.S.
        • Turner W.W.
        The use of respiratory quotient to determine the efficacy of nutrition support regimes.
        J Am Diet Assoc. 1987; : 180-183
        • Zauner C.
        • Schuster B.I.
        • Schneeweiss B.
        Similar metabolic responses to standardized total parenteral nutrition of septic and nonseptic critically ill patients.
        Am J Cin Nutr. 2001; 74: 265-270
        • Fung E.B.
        Estimating energy expenditure in critically ill adults and children.
        AACN Clin Issues. 2000; 11: 480-497
        • McCamish M.A.
        • Dean R.E.
        • Ouellette T.R.
        Assessing energy requirements of patients on respirators.
        JPEN J Parenter Enteral Nutr. 1981; 5: 513-516
        • Brandi L.S.
        • Bertolini R.
        • Santini L.
        • Cavant S.
        Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient.
        Crit Care Med. 1989; 27: 531-539

      Biography

      C. Compher is an assistant professor of nutrition science, Penn Nursing and Hospital of University of Pennsylvania Clinical Nutrition Support Service, Philadelphia

      Biography

      D. Frankenfield is the chief clinical dietitian and nutrition support dietitian, Department of Clinical Nutrition, Milton S. Hershey Medical Center, Hershey, PA

      Biography

      N. Keim is a research chemist, Western Human Nutrition Research Center, University of California, Davis

      Biography

      L. Roth-Yousey is president, Roth-Yousey and Associates, North Branch, MN